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Abstract 
 

 

 

Hall effect thrusters (HETs) are widely used in space propulsion systems due to their 
high thrust-to-power ratio, high specific impulse, high efficiency, and simple structure. 
However, partial plasma confinement is fundamental to Hall Thrusters Physics and leads 
to a variety of instabilities such as Modified Two Stream Instability and Electron Cyclotron 
Drift Instability that negatively impact the efficiency and overall performance of the 
thrusters. In this study, we numerically solve the general dispersion relation for Hall thrusters 
to better understand these instabilities and improve the design process. 

 

 



  

2 

 

 

 

Acknowledgement 
 

 

I give my deepest thanks to my supervisor Dr. Bhooshan Paradkar for introducing me to 
this beautiful subject and for being such an unlimited source of inspiration. His guidance 

helped me in all the time of my project and writing of this report. 

 

I am also indebted to my fellow classmates for their careful reading of an early draft of 
the manuscript and for their many valuable comments and suggestions that have been 

incorporated in the text to improve the presentation. 

 

 

 



HALL THRUSTER INSTABILITIES 

3 

  

Table of Contents 

Abstract ...................................................................................................... 1 

Acknowledgement ........................................................................................ 2 

Table of Contents ........................................................................................ 3 

1 Introduction .......................................................................................... 4 

1.1 Hall Thrusters .................................................................................................... 4 
1.2 Fixed point Iteration for Solving numerical equations: .......................................... 5 

2 Hall thruster Dispersion Relation ............................................................ 7 

2.1 Problem at hand ................................................................................................. 7 
2.2 Derivation .......................................................................................................... 7 

2.2.1 First Principal derivation of Velocity – ..................................................................... 7 
2.2.2 Distribution function .............................................................................................. 8 
2.2.3 Perturbation Equations........................................................................................... 8 
2.2.4 Dispersion Relation: ............................................................................................... 9 

2.3 Limiting Cases of Interest ................................................................................. 10 
2.3.1 Cold Plasma Limit ............................................................................................... 10 
2.3.2 High T Plasma Limit ............................................................................................ 10 
2.3.3 Semi Cold Plasma Limit ....................................................................................... 11 

2.4 Kinds of Instability ........................................................................................... 11 
2.4.1 Modified Two Stream Instability – ........................................................................ 11 
2.4.2 Electron Cyclotron Drift Instability – ..................................................................... 12 

3 Numerical Analysis .............................................................................. 14 

3.1 Normalizing the General Dispersion Relation ...................................................... 14 
3.2 Numerical solution for the cold ion plasma limit ................................................ 15 

3.2.1 Iterative expression for this case: ........................................................................... 15 
3.3 Numerical solutions – ....................................................................................... 16 

3.3.1 Ducrocq Eq.–....................................................................................................... 17 
3.3.2 Modified Ducrocq Eq.– ......................................................................................... 18 
3.3.3 General Dispersion relation - ................................................................................. 18 

3.4 Further prospects ............................................................................................. 25 

4 Bibliography ........................................................................................ 26 

 



 Introduction 

4 

 

1 Introduction 

Partially magnetised plasmas immersed in crossed 𝐸𝐸 × 𝐵𝐵 fields are employed in electric propulsion 
systems like Hall thrusters. Such plasmas are prone to a variety of instabilities that impair device 
operation, particularly instabilities that result in anomalous transport levels that are generally orders of 
magnitude higher than classical (collisional) transport levels. (Adam, et al., 2008). The nature of 
anomalous transport (mobility) is yet unknown; however, it has been attributed to several possible 
instabilities that may interact to produce the observed levels of anomalous transport.  

Since this manuscript is more focused on numerical of the general dispersion relation (which was 
derived by the author in Plasma Instabilities in Hall Thrusters: Analytical study1), the presumed structure 
of this report is to start with a quick recap of derivation of the general Dispersion relation for Hall 
Thrusters and three specific cases of interest in Chapter 2, while Chapter 3 consists of the numerical 
solutions of the Dispersion relation. The manuscript concludes with remarks on how to improve on the 
work. 

1.1 Hall Thrusters 

Hall thrusters are gridless ion thrusters used in electric space propulsion systems. Xenon ions are 
extracted from a plasma without grids and accelerated to around 20 km/s in a conventional Hall thruster 
working in the kW power range (e.g., 300 V, 4 A), and the thrust is on the order of 70 mN. (Boeuf, 
2017; Goebel & Katz, 2008). The strong electric field generated in the quasi-neutral plasma of a Hall 
thruster accelerates ions due to the loss in electron conductivity caused by the presence of a magnetic 
barrier perpendicular to the passage of electrons from the cathode to the anode. 

Permanent magnets provide this external magnetic barrier. The combination of the parallel electric 
field 𝐸𝐸 and the perpendicular magnetic field 𝐵𝐵 results in a substantial electron drift in the 𝐸𝐸 × 𝐵𝐵 direction 
(Hall current). Good confinement of the electrons and an associated drop of electron conductivity can 
be achieved only if the Hall current does not hit a wall so the 𝐸𝐸 × 𝐵𝐵 direction must be closed on itself, 
i.e., must be in the azimuthal direction of a cylindrical configuration, essentially a closed drift device 
(Zhurin et al., 1999).  

In a Hall thruster, the electric field is axial and the magnetic field is radial (see Fig. 1-1a). Plasma 
is produced in a channel between two coaxial dielectric cylinders. Electrons are injected through an 
emissive cathode outside the exhaust plane, with the anode at the channel's end. The magnetic barrier 
increases the residence time of electrons in the channel, allowing them to ionise the flow of neutral xenon 
atoms supplied from the anode. Ionization efficiency is very good in Hall thrusters and more than 90% 
of the gas flow is ionized for applied voltages on the order of 200 V or more. 

A major feature of Hall thrusters is that Ionization occurs immediately upstream of the region of 
high axial electric field, as can be seen in Fig. 1-1b. Since ions that are essentially unmagnetized, it can 

 

1 P roject  and report  as part  of Semester 8 curriculum 
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easily be removed from the plasma and accelerated by the axial 
electric field without colliding as the ionisation and acceleration 
areas are close together and even overlap. The neutral density in 
the exhaust section of a Hall thruster is very low due to the high 
ionisation efficiency, therefore electron movement across magnetic 
field lines cannot be attributed to electron collisions with neutral 
atoms. (The neutral density is too low by more than a factor of 
10 to allow for classical, collisional cross-field transport, see 
(Boeuf, 2017)). 

Even though Hall thrusters were created over 50 years ago and 
still used in number of spacecrafts, the electron transport across 
the magnetic barrier (“anomalous transport”) is still a mystery. 
Anything ranging from Electron collisions with the channel walls 
and secondary electron emission to instabilities and turbulence 
could be responsible for this anomalous transport through the 
magnetic field. 

In recent particle simulations of Hall thrusters, the 𝐸𝐸 × 𝐵𝐵 
Electron Drift Instability (𝐸𝐸 × 𝐵𝐵 EDI), also known as Electron 
Cyclotron Drift Instability, has been identified and is a plausible 
candidate to explain the electron transport across the magnetic 
field in these devices. The formation of an azimuthal wave and 
velocity of the order of the ion acoustic velocity, which promotes electron transport across the magnetic 
field, characterises this instability. 

In 2D geometry, a novel form of unstable mode known as the Modified Two-Stream Instability 
(MTSI) occurs for finite values of the wave number 𝑘𝑘𝑧𝑧 along the magnetic field. The unstable mode 
resembles the unmagnetized ion sound at larger values of 𝑘𝑘𝑧𝑧. 

1.2 Fixed point Iteration for Solving numerical equations: 

Fixed-point iteration is a numerical method used to solve equations of the form 𝑥𝑥 = 𝑔𝑔(𝑥𝑥) where 𝑔𝑔 is a 
continuous function. The method starts with an initial guess 𝑥𝑥0 for the solution and generates a sequence 
of approximations 𝑥𝑥1,𝑥𝑥2,𝑥𝑥3, … using the recursive formula 𝑥𝑥𝑛𝑛+1 = 𝑔𝑔(𝑥𝑥𝑛𝑛). The sequence converges to a 
fixed point of the function 𝑔𝑔, which is a solution of the equation. 

The convergence of the fixed-point iteration method depends on the properties of the function 𝑔𝑔. If 𝑔𝑔 is 
Lipschitz continuous with Lipschitz constant 𝐿𝐿 < 1, then the fixed-point iteration method converges 
linearly to the unique fixed point of 𝑔𝑔. If 𝑔𝑔 is differentiable and its derivative satisfies |𝑔𝑔′(𝑥𝑥)| < 1 for 
all 𝑥𝑥 in an interval containing the fixed point, then the fixed-point iteration method converges locally to 
the fixed point. 

Fig. 1-1: a) Schematic of a Hall thruster. b) 
The curves show, respectively, the axial 
profiles along the mid channel axis, of the 
external radial magnetic field, axial electric 
field, and ionization rate (number of 
electron-ion pairs generated per unit volume 
per unit time). 
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In practice, the fixed-point iteration method is often used in combination with other numerical methods. 
For example, it can be used to find an initial guess for Newton’s method or to accelerate the convergence 
of other iterative methods. The choice of the initial guess and the stopping criterion are important factors 
that affect the performance of the fixed-point iteration method. 

Compared to other numerical methods such as Newton’s method, fixed-point iteration has its advantages 
and disadvantages. Newton’s method is faster and more robust than fixed-point iteration, as it exploits 
the information of the derivative of the function 𝑓𝑓. However, it requires the calculation of 𝑓𝑓 and 𝑓𝑓′ at 
each iteration, which may be difficult or expensive for some functions. Moreover, it may fail or diverge 
if 𝑓𝑓′ is zero or close to zero at or near the root. 

Here is a summary of other root finding algorithms: 

i. Fixed-point iteration method: This method is used to find the roots of an equation by rewriting it 
in the form 𝑥𝑥 = 𝑔𝑔(𝑥𝑥). The algorithm then iteratively applies 𝑔𝑔(𝑥𝑥) to an initial guess until 
convergence is achieved. (John von Neumann, 1929) 

ii. Bisection method: This method is used to find the roots of an equation by repeatedly bisecting an 
interval and selecting a subinterval in which a root must lie until convergence is achieved. 
(Thomas Harriot, 1631) 

iii. Newton’s method: This method is used to find the roots of an equation by iteratively applying a 
linear approximation of the function at each guess until convergence is achieved. (Isaac Newton, 
1685) 

iv. Secant method: This method is used to find the roots of an equation by iteratively applying a 
linear approximation of the function using two points until convergence is achieved. (Thomas 
Simpson, 1740) 

v. False position method: This method is used to find the roots of an equation by iteratively 
applying a linear approximation of the function using two points until convergence is achieved and 
then selecting a subinterval in which a root must lie. (Thomas Harriot, 1631) 
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2 Hall thruster Dispersion Relation 

2.1 Problem at hand 

The situation is as follows: 

1.  The instability is studied in the local Cartesian frame depicted 
because the typical wavelength is short compared to the thruster 
radius (a few millimetres for a radius of about five centimetres 
for the thruster used in scattering experiments). Fig. 2-1 is the 
schematic representation of the model. The 𝒙𝒙� axis is along the 
electric field 𝐸𝐸0 and assumed to be along the thruster axis. The 
𝒚𝒚� axis is locally along the 𝑬𝑬 × 𝑩𝑩 drift velocity 𝑉𝑉𝑑𝑑 and along the 

azimuthal direction 𝜃𝜃�. The 𝒛𝒛� axis is locally along the magnetic 
field lines in the radial direction. In addition, the plasma is infinite. 

2. ions are assumed to be unmagnetized and cold. Landau damping due to ions is neglected. 

3. the ion population has a mean velocity 𝒗𝒗𝑝𝑝 = 𝑣𝑣𝑝𝑝𝒙𝒙� that is identified as the ion beam/plasma velocity. 

4. Dynamics are described using the Vlasov equation. The velocity distribution is assumed to be 
Maxwellian. 

5. the static magnetic field 𝑩𝑩0 = 𝐵𝐵0𝒛𝒛� and the static electric field 𝑩𝑩0 = 𝐵𝐵0𝒙𝒙� are assumed to be uniform. 
Magnetized electrons drift azimuthally at a velocity 𝑽𝑽𝑑𝑑 = −𝐸𝐸0 ∕ 𝐵𝐵0𝒚𝒚�. 

6. the wave is assumed to be electrostatic. 

2.2 Derivation 

In this session we look at the single particle solution in a uniform E × B field. Motivation for a single 
particle solution is two-fold (i. Integration over unperturbed trajectories using Method of Characteristics; 
ii. Constants of Motion for the Distribution Function) and is made more apparent in the following 
sessions. For a detailed derivation refer to Plasma Instabilities in Hall Thrusters: Analytical study2. 

Using Lorentz equation of motion, 

𝑚𝑚�̇�𝐯 = 𝑞𝑞(𝐄𝐄 + 𝐯𝐯 × 𝐁𝐁)  where  𝐯𝐯 = 𝐯𝐯∥ + 𝐯𝐯⊥ 

the most general motion of a charged particle in a uniform field would be, 

𝐯𝐯 = 𝐯𝐯∥ + 𝐯𝐯𝑑𝑑 + 𝐯𝐯𝐿𝐿 = �
𝑞𝑞𝐸𝐸∥𝑡𝑡
𝑚𝑚

+ v0�𝐁𝐁�∥ +
𝐄𝐄 × 𝐁𝐁
𝐵𝐵2

+
𝑑𝑑�𝐫𝐫𝐿𝐿𝑒𝑒𝑖𝑖Ω(𝑡𝑡−𝑡𝑡0)�

𝑑𝑑𝑡𝑡
 (2.2-1) 

2.2.1 First Principal derivation of Velocity – 

For the boundary condition, 𝐯𝐯�⃗ (0) = 𝐯𝐯�𝑥𝑥 − 𝐸𝐸/𝐵𝐵 𝐯𝐯�𝑦𝑦 + v∥𝐯𝐯�𝑧𝑧: 

 

2 P roject  and report  as part  of Semester 8 curriculum 

Fig. 2-1: Schematics of the Hall 
Thruster Problem 
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⇒   𝐯𝐯�⃗ (𝑡𝑡) = cos𝜔𝜔𝑐𝑐𝑐𝑐𝑡𝑡′ 𝐯𝐯�𝒙𝒙 − [sin(𝜔𝜔𝑐𝑐𝑐𝑐𝑡𝑡′) + 𝐸𝐸/𝐵𝐵] 𝐯𝐯�𝒚𝒚 + 𝑣𝑣∥𝐯𝐯�𝒛𝒛 

Note that this satisfies the ion’s case where 𝜔𝜔𝑐𝑐𝑐𝑐 → 0 and 𝑣𝑣𝑑𝑑 = 0 when the ion’s motion is physically 
along x-axis. 

2.2.2 Distribution function 

We assume a gaussian initial distribution and construct the distribution function using the Constants of 
Motions, 𝐯𝐯∥2 and (𝐯𝐯⊥′ )2 = (𝐯𝐯⊥ − 𝐯𝐯0)2, 

𝑓𝑓𝑐𝑐0(𝐯𝐯) =
𝑛𝑛𝑐𝑐0

(2𝜋𝜋𝑣𝑣𝑇𝑇𝑐𝑐2 )3/2 e
−
�𝑣𝑣𝑧𝑧2+𝑣𝑣⊥′2�
2 𝑣𝑣𝑇𝑇𝑇𝑇2       where      𝑣𝑣𝑇𝑇𝑐𝑐 = �𝑘𝑘𝐵𝐵𝑇𝑇𝑐𝑐/𝑚𝑚𝑐𝑐 (2.2-2) 

2.2.3 Perturbation Equations 

Under the perturbations, 

𝐵𝐵�⃗ = 𝑩𝑩 + 0
𝐸𝐸�⃗ = 𝑬𝑬 − 𝛻𝛻𝜙𝜙1
𝑓𝑓𝑐𝑐 = 𝑓𝑓𝑐𝑐0 + 𝑓𝑓𝑐𝑐1

     and    𝜙𝜙1 = 𝜙𝜙�1 exp i[𝐤𝐤 ⋅ 𝐱𝐱(𝑡𝑡)−𝜔𝜔𝑡𝑡] 

Using the method of characteristics and Bessel’s Identities, 

𝑓𝑓𝑐𝑐1(𝐱𝐱,𝐯𝐯, 𝑡𝑡) = −
𝑞𝑞𝑐𝑐

𝑚𝑚𝑐𝑐 𝑣𝑣𝑇𝑇𝑐𝑐2
𝑓𝑓𝑐𝑐0(𝐯𝐯) 𝜙𝜙�1ei𝐤𝐤⋅𝐱𝐱−i𝜔𝜔𝑡𝑡

⎣
⎢
⎢
⎢
⎡ 1 + (𝜔𝜔 − 𝐤𝐤 ⋅ 𝐯𝐯0) �  

 

𝑚𝑚,   𝑛𝑛

𝐽𝐽𝑚𝑚 �
𝑘𝑘⊥𝑣𝑣⊥′

𝜔𝜔𝑐𝑐𝑐𝑐
�

× 𝐽𝐽𝑛𝑛 �
𝑘𝑘⊥𝑣𝑣⊥′

𝜔𝜔𝑐𝑐𝑐𝑐
�

ei(𝑛𝑛−𝑚𝑚)𝜑𝜑

�𝑘𝑘𝑧𝑧𝑣𝑣𝑧𝑧 + 𝑘𝑘𝑦𝑦𝑣𝑣0 − 𝜔𝜔 + 𝑛𝑛𝜔𝜔𝑐𝑐𝑐𝑐�⎦
⎥
⎥
⎥
⎤

 (2.2-3) 

where 𝐽𝐽𝑛𝑛 is Bessel’s function of first kind. 

Perturbation in number density 

Since the perturbed number density is, 

𝑛𝑛𝑐𝑐1 = �𝑓𝑓𝑐𝑐1 𝑑𝑑𝐯𝐯 

And so (note that only 𝑘𝑘𝑧𝑧 comes out of the integral), 

𝑛𝑛𝑐𝑐1 = −
𝑞𝑞𝑐𝑐

𝑚𝑚𝑐𝑐  𝑣𝑣𝑇𝑇𝑐𝑐2
𝜙𝜙1(𝐱𝐱, 𝑡𝑡) 𝑛𝑛𝑐𝑐0 �1 +

𝜔𝜔 − 𝑘𝑘𝑦𝑦𝑣𝑣0
√2 𝑘𝑘𝑧𝑧𝑣𝑣𝑇𝑇𝑐𝑐

e−𝑘𝑘⊥2𝑟𝑟𝐿𝐿𝑇𝑇2 �  
𝑛𝑛

 𝐼𝐼𝑛𝑛(𝑘𝑘⊥2𝑟𝑟𝐿𝐿𝑐𝑐2 )�  
∞

−∞
d𝜉𝜉

e−𝜉𝜉2

𝜉𝜉 − 𝛼𝛼𝑛𝑛𝑐𝑐
� (2.2-4) 

where αn𝑐𝑐 = �𝜔𝜔 − kyv0𝑐𝑐 − n𝜔𝜔c𝑐𝑐�/√2k𝑧𝑧𝑣𝑣𝑇𝑇𝑐𝑐 and we have used the Bessel identities. 

we have the Ion contribution in the limit 𝜔𝜔𝑐𝑐𝑖𝑖 → 0 so that 𝛼𝛼𝑛𝑛𝑐𝑐 → 𝛼𝛼0𝑐𝑐, 

𝑛𝑛𝑖𝑖1 = −
𝑒𝑒𝑛𝑛0

𝑚𝑚𝑐𝑐𝑣𝑣𝑇𝑇𝑐𝑐2
𝜙𝜙1(𝐱𝐱, 𝑡𝑡) �1 +

𝜔𝜔
√2 𝑘𝑘𝑧𝑧𝑣𝑣𝑇𝑇𝑐𝑐

𝑍𝑍 �
𝜔𝜔

√2𝑘𝑘𝑣𝑣𝑖𝑖
�� (2.2-5) 

Using Eq. 2.2-4 and 2.2-5 in the Gauss’s Law,  
𝛻𝛻2𝜙𝜙1 = 4𝜋𝜋(𝑞𝑞𝑖𝑖𝑛𝑛𝑖𝑖 + 𝑞𝑞𝑒𝑒𝑛𝑛𝑒𝑒) 

We have, 
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𝑘𝑘2𝜅𝜅𝑇𝑇𝑒𝑒
4𝜋𝜋𝑒𝑒2𝑛𝑛0

= −
𝑇𝑇𝑒𝑒
𝑇𝑇𝑖𝑖

 �1 +
𝜔𝜔

√2 𝑘𝑘𝑧𝑧𝑣𝑣𝑇𝑇𝑖𝑖
𝑍𝑍 �

𝜔𝜔
√2𝑘𝑘𝑧𝑧v𝑇𝑇𝑖𝑖

��

−  �1 +
�𝜔𝜔 − 𝑘𝑘𝑦𝑦𝑣𝑣0�
√2 𝑘𝑘𝑧𝑧𝑣𝑣𝑇𝑇𝑒𝑒

� e−𝑘𝑘⊥2𝑟𝑟𝐿𝐿𝑇𝑇2
∞

𝑛𝑛=−∞

 𝐼𝐼𝑛𝑛(𝑘𝑘⊥2𝑟𝑟𝐿𝐿𝑐𝑐2 ) 𝑍𝑍 �
𝜔𝜔 − 𝑘𝑘𝑦𝑦𝑣𝑣0 − 𝑛𝑛𝜔𝜔𝑐𝑐𝑒𝑒

√2 𝑘𝑘𝑧𝑧𝑣𝑣𝑇𝑇𝑒𝑒
�� 

To get the warm magnetized plasma (Doppler shifted electrons) electrostatic dispersion relation, 

𝑇𝑇𝑖𝑖 �1 +
𝑘𝑘2v𝑇𝑇𝑒𝑒2

𝜔𝜔𝑝𝑝𝑒𝑒2
� + 𝑇𝑇𝑒𝑒 �1 +

𝜔𝜔
√2 𝑘𝑘𝑧𝑧𝑣𝑣𝑇𝑇𝑖𝑖

𝑍𝑍 �
𝜔𝜔

√2𝑘𝑘𝑧𝑧v𝑇𝑇𝑖𝑖
��

+
�𝜔𝜔 − 𝑘𝑘𝑦𝑦𝑣𝑣0�
√2 𝑘𝑘𝑧𝑧𝑣𝑣𝑇𝑇𝑒𝑒

� e−𝑘𝑘⊥2𝑟𝑟𝐿𝐿𝑇𝑇2
∞

𝑛𝑛=−∞

 𝐼𝐼𝑛𝑛(𝑘𝑘⊥2𝑟𝑟𝐿𝐿𝑐𝑐2 ) 𝑍𝑍 �
𝜔𝜔 − 𝑘𝑘𝑦𝑦𝑣𝑣0 − 𝑛𝑛𝜔𝜔𝑐𝑐𝑒𝑒

√2 𝑘𝑘𝑧𝑧𝑣𝑣𝑇𝑇𝑒𝑒
� = 0 

(2.2-6) 

2.2.4 Dispersion Relation: 

We define some parameters relevant for our problem, 

𝜆𝜆𝐷𝐷 = �
𝜀𝜀0𝑘𝑘𝐵𝐵𝑇𝑇𝑒𝑒
𝑛𝑛𝑒𝑒𝑞𝑞𝑒𝑒

, 𝜔𝜔𝑝𝑝𝑐𝑐2 =
4𝜋𝜋𝑛𝑛𝑒𝑒q𝑐𝑐2

𝑚𝑚∗  , 𝑟𝑟𝐿𝐿𝑐𝑐2 =
𝑘𝑘𝐵𝐵𝑇𝑇𝑐𝑐
𝑚𝑚𝑐𝑐𝜔𝜔𝑐𝑐𝑐𝑐2

, 𝜔𝜔𝑐𝑐𝑐𝑐 =
𝑞𝑞𝑐𝑐𝐵𝐵
𝑚𝑚

, 𝑣𝑣𝑇𝑇𝑐𝑐 = �
𝑘𝑘𝐵𝐵𝑇𝑇𝑐𝑐
𝑚𝑚𝑐𝑐

 

And the following relation are worth noting, 

𝜔𝜔𝑝𝑝 ≡
𝑣𝑣𝑇𝑇
𝜆𝜆𝐷𝐷

,    𝜔𝜔𝑐𝑐 ≡
𝑣𝑣𝑇𝑇
𝑟𝑟𝐿𝐿

, 𝑟𝑟𝐿𝐿𝑐𝑐2 ≡
𝜔𝜔𝑝𝑝𝑐𝑐2 𝜆𝜆𝐷𝐷𝑐𝑐2

𝜔𝜔𝑐𝑐𝑐𝑐2
 

where 𝜆𝜆𝐷𝐷 is the Debye wavelength, 𝜔𝜔𝑝𝑝 is the plasma frequency, 𝜔𝜔𝑐𝑐 the cyclotron frequency, 𝑣𝑣𝑇𝑇 is thermal 
velocity and 𝑟𝑟𝐿𝐿 is the thermal Lamour radius.  
 
This may be compactly written as, 

1 + k2𝜆𝜆de2 +
Te
Ti
�1 + α0iZ(α0i)�+ α0e � 𝛽𝛽nZ(αne)

𝑛𝑛=∞

𝑛𝑛=−∞

 = 0 (2.2-7) 

where α0i ≡ 𝜔𝜔/√2kvTi  and  𝛽𝛽n ≡ e−ky2𝑟𝑟e2In�ky2𝑟𝑟e2� with 𝐼𝐼n being nth order modified Bessel function of 

the first kind, 𝑍𝑍 is the Fried - Conte function and αne ≡ �𝜔𝜔 − kyv0 − n𝜔𝜔ce�/√2k𝑧𝑧𝑣𝑣Te and 𝑟𝑟𝑒𝑒 is electron 
Lamour Radius. 

Many variations of this Dispersion relation have been intensively studied for e.g., in (Ducrocq et 
al., 2006) who studied the effects of ion plasma with an initial v𝑥𝑥 component or in the context of 
collisionless plasma shocks by (Gary & Sanderson, 1970) who showed that these resonances become less 
sharp as the angle 𝜃𝜃 between the magnetic field and the wave vector decreases and that the growth rate 
remains high in a small solid angle around 𝜃𝜃 = 90𝑜𝑜 before falling off. 
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2.3 Limiting Cases of Interest 

To be draw any insights from relation we look at various limiting cases. A common formalism in the 
modern literature is to use the Gordeev integral (Gordeev, 1952) of form, 

𝑔𝑔(𝛺𝛺,𝑋𝑋,𝑌𝑌) =
Ω
√2𝑌𝑌

e−𝑋𝑋 �  
+∞

𝑛𝑛=−∞

Z �
Ω − 𝑛𝑛
√2𝑌𝑌

� I𝑛𝑛(𝑋𝑋) 

As the asymptotic expansion of this has been obtained using different methods, say, the method of 
steepest descent as in (Paris, 1998) or a method based on the Hadamard expansion of the Gordeev 
function as in (Schmitt, 1974). We shall proceed with a method like (Gary, 1970). 

These cases are best expressed when we generalize the dispersion relation in the following manner: 

1 +�  
e−𝑘𝑘⊥2𝑟𝑟𝐿𝐿𝑇𝑇2

𝑘𝑘2𝜆𝜆𝐷𝐷𝑐𝑐2
�𝐼𝐼0(𝑘𝑘⊥2𝑟𝑟𝐿𝐿𝑐𝑐2 )�1 + 𝛼𝛼0𝑐𝑐𝑍𝑍(𝛼𝛼0𝑐𝑐)�+ �𝐼𝐼𝑛𝑛(𝑘𝑘⊥2𝑟𝑟𝐿𝐿𝑐𝑐2 )

∞

𝑛𝑛=1

[2 + 𝛼𝛼0𝑐𝑐  {𝑍𝑍(𝛼𝛼𝑛𝑛𝑐𝑐) + 𝑍𝑍(𝛼𝛼−𝑛𝑛𝑐𝑐)}]�
𝑐𝑐

= 0 (2.3-1) 

- Most general form of warm magnetized plasma electrostatic dispersion relation Eq. 2.2-6 for 

Doppler shifted 𝜎𝜎 species.  

- This form is particularly useful for emphasizing the symmetry in 𝑛𝑛, which are higher order harmonics 
of cyclotron frequency. 

2.3.1 Cold Plasma Limit 

The lowest order thermal correction in the cold plasma limit (|𝛼𝛼0| ≡ �𝜔𝜔 − kyv0�/k𝑧𝑧v𝑇𝑇 ≫ 1) is,  

1 −
𝑘𝑘𝑧𝑧2

𝑘𝑘2
 
ω𝑝𝑝𝑖𝑖
2

ω2 −  e−𝑘𝑘⊥2𝑟𝑟𝐿𝐿𝑒𝑒2

𝑘𝑘2𝜆𝜆𝐷𝐷𝑒𝑒2
�
𝑘𝑘𝑧𝑧2𝑣𝑣𝑇𝑇𝑒𝑒

2  𝐼𝐼0(𝑘𝑘⊥2𝑟𝑟𝐿𝐿𝑒𝑒2 )

�𝜔𝜔 − 𝑘𝑘𝑦𝑦𝑣𝑣0�
2 −�

2𝑛𝑛𝑒𝑒2𝜔𝜔𝑐𝑐𝑒𝑒2  

�𝜔𝜔 − 𝑘𝑘𝑦𝑦𝑣𝑣0�
2 − 𝑛𝑛𝑒𝑒2𝜔𝜔𝑐𝑐𝑒𝑒2

𝐼𝐼𝑛𝑛(𝑘𝑘⊥2𝑟𝑟𝐿𝐿𝑒𝑒2 )
∞

𝑛𝑛=1

� = 0 (2.3-2) 

- Notice that the Landau damping appears both at the wave frequency 𝜔𝜔 and at cyclotron harmonics, 
i.e., in the vicinity of 𝑛𝑛𝜔𝜔𝑐𝑐𝑐𝑐. We shall attempt an analysis of this limit in the following chapter. 

2.3.2 High T Plasma Limit 

We consider the lowest order thermal correction in the hot plasma limit (|𝛼𝛼0| ≪ 1), 

1 + �  
e−𝑘𝑘⊥2𝑟𝑟𝐿𝐿𝑇𝑇2

𝑘𝑘2𝜆𝜆𝐷𝐷𝑐𝑐2
�𝐼𝐼0(𝑘𝑘⊥2𝑟𝑟𝐿𝐿𝑐𝑐2 )�1− 2𝛼𝛼0𝑐𝑐2 − i𝛼𝛼0𝑐𝑐√𝜋𝜋�

𝑐𝑐

+ 2�𝐼𝐼𝑛𝑛(𝑘𝑘⊥2𝑟𝑟𝐿𝐿𝑐𝑐2 )
∞

𝑛𝑛=1

�1 − 2𝛼𝛼0𝑐𝑐2 �1−
(𝛼𝛼𝑛𝑛𝑐𝑐2 + 𝛼𝛼−𝑛𝑛𝑐𝑐2)

3
�+ i𝛼𝛼0𝑐𝑐√𝜋𝜋�� = 0 

Analyzing this limit is very tricky not only because of the complex dispersion relation but mainly 

because of the fact that |𝛼𝛼𝑛𝑛| = ��𝜔𝜔 − 𝑘𝑘𝑦𝑦𝑣𝑣0 − 𝑛𝑛𝜔𝜔𝑐𝑐𝑐𝑐�/𝑘𝑘∥𝑣𝑣𝑇𝑇𝑐𝑐� ≪ 1 happens due to not just 𝑣𝑣𝑇𝑇𝑐𝑐 → ∞, but 

also when �𝜔𝜔 − 𝑘𝑘𝑦𝑦𝑣𝑣0� ~ |𝑛𝑛𝜔𝜔𝑐𝑐𝑐𝑐| which leads to strong coupling of electron and ion modes. 

Also, in this limit since ions are highly energetic, they can no longer be treated as unmagnetized 
(𝜔𝜔 ≪ 𝜔𝜔𝑐𝑐𝑖𝑖) which is a necessary requirement in Hall Thrusters. This leads us to the next limiting case. 
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2.3.3 Semi Cold Plasma Limit 

A limit that may be of particular importance to Hall Thruster Instabilities is the case when 𝑇𝑇𝑒𝑒 ≫ 𝑇𝑇𝑖𝑖 
leading to 𝛼𝛼𝑛𝑛𝑒𝑒 ≪ 1 and 𝛼𝛼𝑛𝑛𝑖𝑖 ≫ 1 expansions in the Dispersion relation. 

For |𝑧𝑧| ≫ 1 or |
𝜔𝜔 − 𝑘𝑘𝑥𝑥𝑣𝑣𝑝𝑝
√2𝑘𝑘𝑧𝑧𝑣𝑣𝑇𝑇𝑖𝑖

| ≫ 1, when 𝑣𝑣𝑇𝑇𝑖𝑖 → 0, 

1 + 𝑧𝑧 𝑍𝑍(z) ~ 1 + 𝑧𝑧 �i√𝜋𝜋 σ 𝑒𝑒−𝑧𝑧2 −
1
𝑧𝑧 �

1 +
1

2𝑧𝑧2
+ 𝒪𝒪(𝑧𝑧−4)�� =  i𝑧𝑧√𝜋𝜋 σ 𝑒𝑒−𝑧𝑧2 −

1
2𝑧𝑧2

+ 𝒪𝒪(𝑧𝑧−4) 

i.e., 

1 +
𝜔𝜔 − 𝑘𝑘𝑥𝑥𝑣𝑣𝑝𝑝
√2𝑘𝑘𝑧𝑧𝑣𝑣𝑇𝑇𝑖𝑖

𝑍𝑍 �
𝜔𝜔 − 𝑘𝑘𝑥𝑥𝑣𝑣𝑝𝑝
√2𝑘𝑘𝑧𝑧𝑣𝑣𝑇𝑇𝑖𝑖

�  ~ 1 +
𝜔𝜔 − 𝑘𝑘𝑥𝑥𝑣𝑣𝑝𝑝
√2𝑘𝑘𝑧𝑧𝑣𝑣𝑇𝑇𝑖𝑖

�𝑖𝑖√𝜋𝜋σ exp−�
𝜔𝜔 − 𝑘𝑘𝑥𝑥𝑣𝑣𝑝𝑝
√2𝑘𝑘𝑧𝑧𝑣𝑣𝑇𝑇𝑖𝑖

�
2

−
√2𝑘𝑘𝑧𝑧𝑣𝑣𝑇𝑇𝑖𝑖
𝜔𝜔 − 𝑘𝑘𝑥𝑥𝑣𝑣𝑝𝑝

−
1

2𝑧𝑧3�

=
𝑖𝑖√𝜋𝜋�𝜔𝜔 − 𝑘𝑘𝑥𝑥𝑣𝑣𝑝𝑝�σ

√2𝑘𝑘𝑧𝑧𝑣𝑣𝑇𝑇𝑖𝑖
exp−�

𝜔𝜔 − 𝑘𝑘𝑥𝑥𝑣𝑣𝑝𝑝
√2𝑘𝑘𝑧𝑧𝑣𝑣𝑇𝑇𝑖𝑖

�
2

−
𝑘𝑘𝑧𝑧2𝜆𝜆𝐷𝐷𝑖𝑖2 𝜔𝜔𝑝𝑝𝑖𝑖

2

�𝜔𝜔 − 𝑘𝑘𝑥𝑥𝑣𝑣𝑝𝑝�
2 = X −

𝑘𝑘𝑧𝑧2𝜆𝜆𝐷𝐷𝑖𝑖2 𝜔𝜔𝑝𝑝𝑖𝑖
2

�𝜔𝜔 − 𝑘𝑘𝑥𝑥𝑣𝑣𝑝𝑝�
2 

Hence, we have the modified Ducrocq eq., 

1 + 𝑘𝑘2𝜆𝜆𝐷𝐷𝑒𝑒2 + g�
𝜔𝜔 − 𝑘𝑘𝑦𝑦𝑉𝑉𝑑𝑑

𝜔𝜔𝑐𝑐𝑒𝑒
, �𝑘𝑘𝑥𝑥2 + 𝑘𝑘𝑦𝑦2�𝜌𝜌2,𝑘𝑘𝑧𝑧2𝜌𝜌2� −

𝑇𝑇𝑒𝑒
𝑇𝑇𝑖𝑖
�
𝑘𝑘 
2𝜆𝜆𝐷𝐷𝑖𝑖2 𝜔𝜔𝑝𝑝𝑖𝑖

2

�𝜔𝜔 − 𝑘𝑘𝑥𝑥𝑣𝑣𝑝𝑝�
2 − 𝑋𝑋� = 0 (2.3-3) 

Which in the limit of 𝑋𝑋 → 0 gives the Ducrocq eq. (Ducrocq et al., 2006), 

1 + 𝑘𝑘2𝜆𝜆𝐷𝐷2 + g�
𝜔𝜔 − 𝑘𝑘𝑦𝑦𝑉𝑉𝑑𝑑

𝜔𝜔𝑐𝑐𝑒𝑒
, �𝑘𝑘𝑥𝑥2 + 𝑘𝑘𝑦𝑦2�𝜌𝜌2,𝑘𝑘𝑧𝑧2𝜌𝜌2� −

𝑘𝑘2𝜆𝜆𝐷𝐷2𝜔𝜔𝑝𝑝𝑖𝑖
2

�𝜔𝜔 − 𝑘𝑘𝑥𝑥𝑣𝑣𝑝𝑝�
2 = 0 (2.3-4) 

For the numerical analysis in Chapter 3, we shall be starting with this limit since it represents the best 
of our interest (Sec. 2.2.1). 

2.4 Kinds of Instability 

We focus our attention on two basic modes of Instability in the regime of 𝑘𝑘𝑦𝑦𝑟𝑟𝐿𝐿𝑒𝑒 ≪ 1 or small 
perturbation wavevector.  

2.4.1 Modified Two Stream Instability – 

Two Stream Instabilities arise due to interaction among different species that are separated by drift 
direction and velocity.  For the case where 𝜔𝜔 − 𝑘𝑘𝑦𝑦𝑣𝑣0 ≪ 𝜔𝜔𝑐𝑐𝑒𝑒 (ions are unmagnetized), 𝑘𝑘𝑦𝑦𝑟𝑟𝐿𝐿𝑒𝑒 ≪ 1 (so 
that only the lowest-order finite Larmor radius terms are retained), 

For 𝑘𝑘𝑦𝑦𝑟𝑟𝐿𝐿𝑒𝑒 ≪ 1,  

𝑘𝑘𝑦𝑦2 �1 +
𝑟𝑟𝐿𝐿𝑒𝑒2

𝜆𝜆𝐷𝐷𝑒𝑒2
−
𝑟𝑟𝐿𝐿𝑖𝑖2

𝜆𝜆𝐷𝐷𝑖𝑖2
�
𝜔𝜔𝑐𝑐𝑖𝑖
2

𝜔𝜔2��+ 𝑘𝑘𝑧𝑧2 �1−
1
𝜆𝜆𝐷𝐷𝑒𝑒2

�
𝑣𝑣𝑇𝑇𝑒𝑒
2

�𝜔𝜔 − 𝑘𝑘𝑦𝑦𝑣𝑣𝑒𝑒0�
2� −

1
𝜆𝜆𝐷𝐷𝑖𝑖2

𝑣𝑣𝑇𝑇𝑖𝑖
2

𝜔𝜔2�

− 𝑘𝑘𝑦𝑦4 �
𝑟𝑟𝐿𝐿𝑒𝑒4

𝜆𝜆𝐷𝐷𝑒𝑒2
�

3
(4𝜔𝜔𝑐𝑐𝑒𝑒2 )�+

𝑟𝑟𝐿𝐿𝑖𝑖4

𝜆𝜆𝐷𝐷𝑖𝑖2
�

3𝜔𝜔𝑐𝑐𝑖𝑖
2

(𝜔𝜔4)��+ 𝑘𝑘𝑦𝑦2𝑘𝑘𝑧𝑧2 �
1
𝜆𝜆𝐷𝐷𝑒𝑒2

�
𝑣𝑣𝑇𝑇𝑒𝑒
2 𝑟𝑟𝐿𝐿𝑒𝑒2

�𝜔𝜔 − 𝑘𝑘𝑦𝑦𝑣𝑣𝑒𝑒0�
2�+

1
𝜆𝜆𝐷𝐷𝑖𝑖2

𝑣𝑣𝑇𝑇𝑖𝑖
2 𝑟𝑟𝐿𝐿𝑖𝑖2

𝜔𝜔2 � = 0 
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To fourth order, 

𝑘𝑘𝑦𝑦2 �1 +
𝜔𝜔𝑝𝑝𝑒𝑒2

𝜔𝜔𝑐𝑐𝑒𝑒2
−
𝜔𝜔𝑝𝑝𝑖𝑖
2

𝜔𝜔2 �+ 𝑘𝑘𝑧𝑧2 �1 −
𝜔𝜔𝑝𝑝𝑒𝑒2

�𝜔𝜔 − 𝑘𝑘𝑦𝑦𝑣𝑣𝑒𝑒0�
2 −

𝜔𝜔𝑝𝑝𝑖𝑖
2

𝜔𝜔2 � − 𝑘𝑘𝑦𝑦4 �
3

4𝜔𝜔𝑐𝑐𝑒𝑒2
𝑟𝑟𝐿𝐿𝑒𝑒4

𝜆𝜆𝐷𝐷𝑒𝑒2
+

3𝜔𝜔𝑐𝑐𝑖𝑖
2

𝜔𝜔4
𝑟𝑟𝐿𝐿𝑖𝑖4

𝜆𝜆𝐷𝐷𝑖𝑖2
�

+ 𝑘𝑘𝑦𝑦2𝑘𝑘𝑧𝑧2 �
𝜔𝜔𝑝𝑝𝑒𝑒2 𝑟𝑟𝐿𝐿𝑒𝑒2

�𝜔𝜔 − 𝑘𝑘𝑦𝑦𝑣𝑣𝑒𝑒0�
2 +

𝜔𝜔𝑝𝑝𝑖𝑖
2 𝑟𝑟𝐿𝐿𝑖𝑖2

𝜔𝜔2 � = 0 

(2.4-1) 

To second order, 

Since 𝜔𝜔𝑝𝑝 ≡ 𝑣𝑣𝑇𝑇/𝜆𝜆𝐷𝐷 and 𝜔𝜔𝑐𝑐 ≡ 𝑣𝑣𝑇𝑇/𝑟𝑟𝐿𝐿, 

𝑘𝑘𝑦𝑦2 �1 +
𝜔𝜔𝑝𝑝𝑒𝑒2

𝜔𝜔𝑐𝑐𝑒𝑒2
−
𝜔𝜔𝑝𝑝𝑖𝑖
2

𝜔𝜔2 �+ 𝑘𝑘𝑧𝑧2 �1−
𝜔𝜔𝑝𝑝𝑒𝑒2

�𝜔𝜔 − 𝑘𝑘𝑦𝑦𝑣𝑣𝑒𝑒0�
2 −

𝜔𝜔𝑝𝑝𝑖𝑖
2

𝜔𝜔2 � = 0 (2.4-2) 

Rewriting this as, 

1 −
𝜔𝜔𝑝𝑝𝑖𝑖
2

𝜔𝜔2 −
𝜔𝜔𝑝𝑝𝑒𝑒2 𝑘𝑘𝑧𝑧2

�𝜔𝜔 − 𝑘𝑘𝑦𝑦𝑣𝑣0�
2𝑘𝑘2

+
𝜔𝜔𝑝𝑝𝑒𝑒2 𝑘𝑘𝑦𝑦2

𝜔𝜔𝑐𝑐𝑒𝑒2 𝑘𝑘2
= 0 

This may be thought of as coupling between 𝜔𝜔2 ~ 𝜔𝜔𝑝𝑝𝑖𝑖
2 , and the doppler shifted coupling of electrons, 

�𝜔𝜔 − 𝑘𝑘𝑦𝑦𝑣𝑣0�
2~ 

𝜔𝜔𝑝𝑝𝑒𝑒2 𝑘𝑘𝑧𝑧2

𝑘𝑘𝑦𝑦2�𝜔𝜔𝑝𝑝𝑒𝑒2 /𝜔𝜔𝑐𝑐𝑒𝑒2 �+ 𝑘𝑘2
 

which reduces to the lower electron hybrid mode for 𝑘𝑘2 ~ 𝑘𝑘𝑦𝑦2, 

�𝜔𝜔 − 𝑘𝑘𝑦𝑦𝑣𝑣0�
2~

𝑘𝑘𝑧𝑧2

𝑘𝑘𝑦𝑦2
 �

1
𝜔𝜔𝑐𝑐𝑒𝑒2

+
1
𝜔𝜔𝑝𝑝𝑒𝑒2

�
−1

≡
𝑘𝑘𝑧𝑧2

𝑘𝑘𝑦𝑦2
 𝜔𝜔𝐿𝐿𝐿𝐿

2  

The reactive modified two-stream instability changes into the dissipative ion-acoustic instability as 
the ratio 𝑘𝑘𝑧𝑧 ∕ 𝑘𝑘𝑦𝑦 is increased further. Although this intermediate condition is very hard to be realized 
analytically, this regime has been investigated by numerical means. It has also been shown that for a 
large enough 𝑣𝑣th𝑘𝑘𝑧𝑧 ∕ 𝜔𝜔𝑐𝑐𝑒𝑒 ratio the dispersion relation approaches that of an ion acoustic wave3 even 
though the wave vector is almost orthogonal to the magnetic field (Gary & Sanderson, 1970). 

2.4.2 Electron Cyclotron Drift Instability – 

Due to resonances of the ion-acoustic mode and electron cyclotron harmonics, the electron 𝐸𝐸 × 𝐵𝐵 
flow relative to unmagnetized ions leads to the Electron Cyclotron Drift Instability (ECDI). ECDI is 
expected to be a key element in creating an electron flow parallel to the background 𝐸𝐸 field at a rate 
that far exceeds what classical collision theory predicts. Undesirable plasma fluxes towards the walls of 
𝐸𝐸 × 𝐵𝐵 devices may also be a result from such anomalous transport (Wang et al., 2021). 

The defining condition for this instability is when 𝑘𝑘‖ 𝑘𝑘⊥⁄ ≪ 1 leading to the cold plasma, Eq. 2.3-2, 
we take 𝑘𝑘𝑧𝑧 ~ 0, 

 

3 This observat ion is of part icular interest  because ion acoust ic modes are essent ially sound/ longitudinal wave perturbat ions 
and their existence even though the wavevector is almost  perpendicular to perturbat ion (∇𝜙𝜙) requires special at tent ion. 
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𝑘𝑘𝑦𝑦2 �1 − �
𝜔𝜔𝑝𝑝𝑒𝑒2

𝜔𝜔𝑒𝑒2 − 𝜔𝜔𝑐𝑐𝑒𝑒2
� − �

𝜔𝜔𝑝𝑝𝑖𝑖
2

𝜔𝜔𝑖𝑖
2 − 𝜔𝜔𝑐𝑐𝑖𝑖

2 ��

− 𝑘𝑘𝑦𝑦4 �𝑟𝑟𝐿𝐿𝑒𝑒2 �
3𝜔𝜔𝑝𝑝𝑒𝑒2

(𝜔𝜔𝑒𝑒2 − 4𝜔𝜔𝑐𝑐𝑒𝑒2 )(𝜔𝜔𝑒𝑒2 − 𝜔𝜔𝑐𝑐𝑒𝑒2 )�+ 𝑟𝑟𝐿𝐿𝑖𝑖2 �
3𝜔𝜔𝑝𝑝𝑖𝑖

2

(𝜔𝜔𝑖𝑖
2 − 4𝜔𝜔𝑐𝑐𝑖𝑖

2 )(𝜔𝜔𝑖𝑖
2 − 𝜔𝜔𝑐𝑐𝑖𝑖

2 )�� = 0 

To fourth order, 

In the strict limit of 𝜔𝜔𝑐𝑐𝑖𝑖
2 ≪ 𝜔𝜔2, 

𝑘𝑘𝑦𝑦2 �1 − �
𝜔𝜔𝑝𝑝𝑒𝑒2

𝜔𝜔𝑒𝑒2 − 𝜔𝜔𝑐𝑐𝑒𝑒2
� − �

𝜔𝜔𝑝𝑝𝑖𝑖
2

𝜔𝜔𝑖𝑖
2�� − 𝑘𝑘𝑦𝑦4 �𝑟𝑟𝐿𝐿𝑒𝑒2 �

3𝜔𝜔𝑝𝑝𝑒𝑒2

(𝜔𝜔𝑒𝑒2 − 4𝜔𝜔𝑐𝑐𝑒𝑒2 )(𝜔𝜔𝑒𝑒2 − 𝜔𝜔𝑐𝑐𝑒𝑒2 )�+ 3𝑟𝑟𝐿𝐿𝑖𝑖2
𝜔𝜔𝑝𝑝𝑖𝑖
2

𝜔𝜔𝑖𝑖
4� = 0 

To second order, 

𝑘𝑘𝑦𝑦2 �1−
𝜔𝜔𝑝𝑝𝑒𝑒2

�𝜔𝜔 − 𝑘𝑘𝑦𝑦𝑣𝑣𝑒𝑒0�
2 − 𝜔𝜔𝑐𝑐𝑒𝑒2

−
𝜔𝜔𝑝𝑝𝑖𝑖
2

𝜔𝜔2 � = 0 (2.4-3) 

The instability is a result of reactive coupling of the electron (Doppler shifted) upper hybrid mode 
(𝜔𝜔 − 𝑘𝑘𝜈𝜈0)2 = 𝜔𝜔𝑝𝑝𝑒𝑒2 +𝜔𝜔𝑐𝑐𝑒𝑒2  with the short wavelength ion oscillations 𝜔𝜔2 = 𝜔𝜔𝑝𝑝𝑖𝑖

2 . The contribution of higher 
𝑚𝑚 > 1 harmonics in Eq. 2.3-1 (which are absent for 𝑇𝑇𝑒𝑒 = 0) grows with electron temperature and has 

the maximum at shorter wavelengths 𝑘𝑘⊥2𝑟𝑟𝐿𝐿𝑒𝑒2 ≈ 1 due to the e−𝑘𝑘⊥2𝑟𝑟𝐿𝐿𝑒𝑒2  𝐼𝐼𝑛𝑛(𝑘𝑘⊥2𝑟𝑟𝐿𝐿𝑒𝑒2 ) factors. (Lashmore, D. et 
al., 1973) 
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3 Numerical Analysis 

3.1 Normalizing the General Dispersion Relation 

Normalizing an equation before numerically solving it can improve the accuracy and stability of the 
numerical solution. Normalization involves scaling the variables and/or coefficients in the equation so 
that they are of similar magnitude. This can help to avoid issues with numerical precision and round-off 
errors that can arise when dealing with very large or very small numbers. 

Normalization can also be useful when solving systems of equations where the variables have different 
physical units or scales. By normalizing the variables so that they are dimensionless and of similar 
magnitude, we can improve the conditioning of the system and make it easier to solve numerically. 

We have the general dispersion relation from Eq. 2.2-6, 

1 +
1

𝑘𝑘2𝜆𝜆𝐷𝐷𝑖𝑖2
�1 +

𝜔𝜔 − 𝑘𝑘𝑥𝑥𝑣𝑣𝑝𝑝
√2𝑘𝑘𝑧𝑧𝑣𝑣𝑇𝑇𝑖𝑖

𝑍𝑍 �
𝜔𝜔 − 𝑘𝑘𝑥𝑥𝑣𝑣𝑝𝑝
√2𝑘𝑘𝑧𝑧𝑣𝑣𝑇𝑇𝑖𝑖

��

+
1

𝑘𝑘2𝜆𝜆𝐷𝐷𝑒𝑒2
�1 +

�𝜔𝜔 − 𝑘𝑘𝑦𝑦𝑣𝑣0�
√2𝑘𝑘𝑧𝑧𝑣𝑣𝑇𝑇𝑒𝑒

�  
∞

𝑛𝑛=−∞

e−𝑘𝑘⊥2𝑟𝑟𝐿𝐿𝑇𝑇2 𝐼𝐼𝑛𝑛(𝑘𝑘⊥2𝑟𝑟𝐿𝐿𝑒𝑒2 )𝑍𝑍�
𝜔𝜔 − 𝑘𝑘𝑦𝑦𝑣𝑣0 − 𝑛𝑛𝜔𝜔𝑐𝑐𝑒𝑒

√2𝑘𝑘𝑧𝑧𝑣𝑣𝑇𝑇𝑒𝑒
�� = 0 

⇒   1 +
𝜆𝜆𝐷𝐷𝑒𝑒2

𝑘𝑘�2𝜆𝜆𝐷𝐷𝑖𝑖2
�1 +

�𝜔𝜔� − 𝑘𝑘�𝑥𝑥𝑣𝑣�𝑝𝑝�/𝜔𝜔�𝑐𝑐𝑖𝑖
√2𝑘𝑘𝑧𝑧𝑟𝑟𝐿𝐿𝑖𝑖

𝑍𝑍 �
�𝜔𝜔� − 𝑘𝑘�𝑥𝑥𝑣𝑣�𝑝𝑝�/𝜔𝜔�𝑐𝑐𝑖𝑖

√2𝑘𝑘𝑧𝑧𝑟𝑟𝐿𝐿𝑖𝑖
��

+
1
𝑘𝑘�2
�1 +

�𝜔𝜔� − 𝑘𝑘�𝑥𝑥𝑣𝑣�0�/𝜔𝜔�𝑐𝑐𝑒𝑒
√2𝑘𝑘𝑧𝑧𝑟𝑟𝐿𝐿𝑒𝑒

�  
∞

𝑛𝑛=−∞

e−𝑘𝑘⊥2𝑟𝑟𝐿𝐿𝑒𝑒2 𝐼𝐼𝑛𝑛(𝑘𝑘⊥2𝑟𝑟𝐿𝐿𝑒𝑒2 ) 𝑍𝑍 �
�𝜔𝜔� − 𝑘𝑘�𝑥𝑥𝑣𝑣�0�/𝜔𝜔�𝑐𝑐𝑒𝑒 − 𝑛𝑛

√2𝑘𝑘𝑧𝑧𝑟𝑟𝐿𝐿𝑒𝑒
�� = 0 

Using, 

𝑘𝑘𝑧𝑧𝑟𝑟𝐿𝐿𝑖𝑖 =
𝑘𝑘�𝑧𝑧𝑣𝑣𝑡𝑡𝑖𝑖
𝜆𝜆𝐷𝐷𝑒𝑒𝜔𝜔𝑐𝑐𝑖𝑖

𝜆𝜆𝐷𝐷𝑖𝑖
𝜆𝜆𝐷𝐷𝑖𝑖

= 𝑘𝑘�𝑧𝑧
𝜆𝜆𝐷𝐷𝑖𝑖
𝜆𝜆𝐷𝐷𝑒𝑒

= 𝑘𝑘�𝑧𝑧�
𝑇𝑇𝑖𝑖
𝑇𝑇𝑒𝑒

, 𝑘𝑘𝑧𝑧𝑟𝑟𝐿𝐿𝑒𝑒 =
𝑘𝑘�𝑧𝑧𝑣𝑣𝑡𝑡𝑒𝑒
𝜆𝜆𝐷𝐷𝑒𝑒𝜔𝜔𝑐𝑐𝑒𝑒

=
𝑘𝑘�𝑧𝑧𝜔𝜔𝑝𝑝𝑒𝑒/𝜔𝜔𝑝𝑝𝑖𝑖

𝜔𝜔𝑐𝑐𝑒𝑒/𝜔𝜔𝑝𝑝𝑖𝑖
=

𝑘𝑘�𝑧𝑧
𝜔𝜔�𝑐𝑐𝑒𝑒

𝜔𝜔𝑝𝑝𝑒𝑒
𝜔𝜔𝑝𝑝𝑖𝑖

=
𝑘𝑘�𝑧𝑧
𝜔𝜔�𝑐𝑐𝑒𝑒

�
𝑚𝑚𝑖𝑖

𝑚𝑚𝑒𝑒
 

1 +
𝜆𝜆𝐷𝐷𝑒𝑒2

𝑘𝑘�2𝜆𝜆𝐷𝐷𝑖𝑖2
⎣
⎢
⎢
⎡
1 +

�𝜔𝜔� − 𝑘𝑘�𝑥𝑥𝑣𝑣�𝑝𝑝�/𝜔𝜔�𝑐𝑐𝑖𝑖

�2 𝑘𝑘�𝑧𝑧2  𝑇𝑇𝑖𝑖 𝑇𝑇𝑒𝑒�
𝑍𝑍

⎝

⎛�𝜔𝜔� − 𝑘𝑘�𝑥𝑥𝑣𝑣�𝑝𝑝�/𝜔𝜔�𝑐𝑐𝑖𝑖

�2 𝑘𝑘�𝑧𝑧2  𝑇𝑇𝑖𝑖 𝑇𝑇𝑒𝑒� ⎠

⎞

⎦
⎥
⎥
⎤
 

          +
1
𝑘𝑘�2

⎣
⎢
⎢
⎢
⎢
⎡

1 +
�𝜔𝜔� − 𝑘𝑘�𝑥𝑥𝑣𝑣�0�/𝜔𝜔�𝑐𝑐𝑒𝑒

�2 𝑘𝑘
�𝑧𝑧2
𝜔𝜔�𝑐𝑐𝑒𝑒2

𝑚𝑚𝑖𝑖
𝑚𝑚𝑒𝑒

  e
− 𝑘𝑘�⊥2

𝜔𝜔�𝑐𝑐𝑒𝑒2
𝑚𝑚𝑖𝑖
𝑚𝑚𝑒𝑒 �  

∞

𝑛𝑛=−∞

𝐼𝐼𝑛𝑛 �
𝑘𝑘�⊥2

𝜔𝜔�𝑐𝑐𝑒𝑒2
𝑚𝑚𝑖𝑖

𝑚𝑚𝑒𝑒
�  𝑍𝑍

⎝

⎜
⎜
⎛�𝜔𝜔� − 𝑘𝑘�𝑥𝑥𝑣𝑣�0�/𝜔𝜔�𝑐𝑐𝑒𝑒 − 𝑛𝑛

�2 𝑘𝑘
�𝑧𝑧2
𝜔𝜔�𝑐𝑐𝑒𝑒2

𝑚𝑚𝑖𝑖
𝑚𝑚𝑒𝑒 ⎠

⎟
⎟
⎞

⎦
⎥
⎥
⎥
⎥
⎤

= 0 

(3.1-1) 

For, 

𝑇𝑇� =
𝑇𝑇𝑖𝑖
𝑇𝑇𝑒𝑒

;  𝑀𝑀� =
𝑚𝑚𝑖𝑖

𝑚𝑚𝑒𝑒
    so that      

𝛺𝛺𝑖𝑖 = �𝜔𝜔� − 𝑘𝑘�𝑥𝑥𝑣𝑣�𝑝𝑝�/𝜔𝜔�𝑐𝑐𝑖𝑖
 
 
 

𝑌𝑌𝑖𝑖 = 𝑘𝑘�𝑧𝑧2 𝑇𝑇�
           and          

𝛺𝛺𝑒𝑒 = �𝜔𝜔� − 𝑘𝑘�𝑦𝑦𝑣𝑣�𝑑𝑑�/𝜔𝜔�𝑐𝑐𝑒𝑒

𝑋𝑋𝑒𝑒 =
𝑘𝑘�⊥2

𝜔𝜔�𝑐𝑐𝑒𝑒2
 𝑀𝑀�

𝑌𝑌𝑒𝑒 =
𝑘𝑘�𝑧𝑧2

𝜔𝜔�𝑐𝑐𝑒𝑒2
 𝑀𝑀�
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We have the warm Hall thruster dispersion relation in normalised form as, 

𝑘𝑘�2 +
1
𝑇𝑇�
�1 +

𝛺𝛺𝑖𝑖
�2 𝑌𝑌𝑖𝑖

𝑍𝑍 �
𝛺𝛺𝑖𝑖

�2 𝑌𝑌𝑖𝑖
��+ [1 + 𝑔𝑔(𝛺𝛺𝑒𝑒 ,𝑋𝑋𝑒𝑒  ,𝑌𝑌𝑒𝑒  )] = 0 (3.1-2) 

And the corresponding fixed point iterative expression is,  

𝜔𝜔�𝑛𝑛+1 =  −
𝜔𝜔�𝑐𝑐𝑖𝑖�2 𝑌𝑌𝑖𝑖 �𝑇𝑇� �1 + 𝑘𝑘�2 + 𝑔𝑔�𝛺𝛺𝑛𝑛,𝑒𝑒 ,𝑋𝑋𝑒𝑒  ,𝑌𝑌𝑒𝑒 ��+ 1�

𝑍𝑍 �
𝛺𝛺𝑛𝑛,𝑖𝑖

�2 𝑌𝑌𝑖𝑖
�

+ 𝑘𝑘�𝑥𝑥𝑣𝑣�𝑝𝑝 (3.1-3) 

3.2 Numerical solution for the cold ion plasma limit 

We have the Ducrocq equation, Eq. 2.2-4, 

1 + 𝑘𝑘2𝜆𝜆𝐷𝐷2 + g�
𝜔𝜔 − 𝑘𝑘𝑦𝑦𝑉𝑉𝑑𝑑

𝜔𝜔𝑐𝑐𝑒𝑒
, �𝑘𝑘𝑥𝑥2 + 𝑘𝑘𝑦𝑦2�𝜌𝜌2,𝑘𝑘𝑧𝑧2𝜌𝜌2� −

𝑘𝑘2𝜆𝜆𝐷𝐷2𝜔𝜔𝑝𝑝𝑖𝑖
2

�𝜔𝜔 − 𝑘𝑘𝑥𝑥𝑣𝑣𝑝𝑝�
2 = 0 

And the corresponding normalised form, 

1 + 𝑘𝑘�2 + g�
𝜔𝜔� − 𝑘𝑘�𝑦𝑦𝑉𝑉�𝑑𝑑

𝜔𝜔�𝑐𝑐𝑒𝑒
, �𝑘𝑘�𝑥𝑥2 + 𝑘𝑘�𝑦𝑦2�

𝑀𝑀�
𝜔𝜔�𝑐𝑐𝑒𝑒2

,𝑘𝑘�𝑧𝑧2
𝑀𝑀�
𝜔𝜔�𝑐𝑐𝑒𝑒2

� −
𝑘𝑘�2

�𝜔𝜔� − 𝑘𝑘�𝑥𝑥𝑣𝑣�𝑝𝑝�
2 = 0 (3.2-1) 

3.2.1 Iterative expression for this case: 

Writing it in Normalised terms, 

�𝜔𝜔 − 𝑘𝑘𝑥𝑥𝑣𝑣𝑝𝑝�
2 =

𝑘𝑘2

1 + 𝑘𝑘2 + g
        where   g = 𝑔𝑔𝑟𝑟 + 𝑖𝑖𝑔𝑔𝑖𝑖 

Solving this we have, 

𝜔𝜔± = 𝑘𝑘𝑥𝑥𝑣𝑣𝑝𝑝 ±
𝑘𝑘

�1 + 𝑘𝑘2 + 𝑖𝑖𝑔𝑔i + 𝑔𝑔r
= 𝑘𝑘𝑥𝑥𝑣𝑣𝑝𝑝 ±

𝑘𝑘�1 + 𝑘𝑘2 − 𝑖𝑖𝑔𝑔i + 𝑔𝑔r

�𝑔𝑔i2 + (1 + 𝑘𝑘2 + 𝑔𝑔r)2
 

To separate the real and the imaginary part we write it in the form, 

𝜔𝜔± = 𝑘𝑘𝑥𝑥𝑣𝑣𝑝𝑝 ±
𝑘𝑘

�𝑔𝑔i2 + (1 + 𝑘𝑘2 + 𝑔𝑔r)2
(𝑎𝑎 + 𝑖𝑖𝑖𝑖) 

(3.2-2) 

where 𝑎𝑎,𝑖𝑖 ∈  ℝ. 
i.e., 

𝑎𝑎 + 𝑖𝑖𝑖𝑖 = �ℎ − 𝑖𝑖𝑔𝑔i         ⇒      
ℎ = 𝑎𝑎2 − 𝑖𝑖2

𝑖𝑖 → −
𝑔𝑔i
2𝑎𝑎

  

where ℎ = 1 + 𝑘𝑘2 + 𝑔𝑔r. 
And so, 
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𝑎𝑎∓
(+) = ∓

1
√2

�ℎ + �𝑔𝑔i2 + ℎ2    and   𝑖𝑖∓
(+) = ±

𝑔𝑔i

√2�ℎ + �𝑔𝑔i2 + ℎ2

𝑎𝑎∓
(−) = ∓

1
√2

�ℎ − �𝑔𝑔i2 + ℎ2    and   𝑖𝑖∓
(−) = ±

𝑔𝑔i

√2�ℎ − �𝑔𝑔i2 + ℎ2

 

Since 𝑎𝑎, 𝑖𝑖 ∈  ℝ ⇒  𝑎𝑎∓
(−) and 𝑖𝑖∓

(−) are NOT valid solutions. 
Substituting (3) in (1) and on simplifying, 

𝜔𝜔±
(+) = 𝑘𝑘𝑥𝑥𝑣𝑣𝑝𝑝 ±

𝑘𝑘
√2

�ℎ + �ℎ2 + 𝑔𝑔𝑖𝑖2�
1
2�

�ℎ2 + 𝑔𝑔i2
∓

𝑖𝑖
√2

 
𝑘𝑘 𝑔𝑔𝑖𝑖

�ℎ2 + 𝑔𝑔i2 �ℎ + �ℎ2 + 𝑔𝑔𝑖𝑖2�
1
2�
 

To get, 

𝜔𝜔±
(+) = 𝑘𝑘𝑥𝑥𝑣𝑣𝑝𝑝 ±

𝑘𝑘
√2

�ℎ +�ℎ2 + 𝑔𝑔𝑖𝑖2�
1
2�

�ℎ2 + 𝑔𝑔i2
∓

𝑖𝑖
√2

 
𝑘𝑘 𝑔𝑔𝑖𝑖 ��ℎ2 + 𝑔𝑔𝑖𝑖2 − ℎ�

1
2�

�𝑔𝑔𝑖𝑖�ℎ2 + 𝑔𝑔i2
 

The iterative solution then becomes, 

𝜔𝜔+,𝑛𝑛+1
(+) ≡ 𝜔𝜔�+,𝑛𝑛+1 = 𝑘𝑘�𝑥𝑥𝑣𝑣�𝑝𝑝 + 𝜔𝜔�𝑟𝑟,𝑛𝑛+1 + 𝑖𝑖𝑖𝑖𝛾𝛾�𝑛𝑛+1

𝜔𝜔−,𝑛𝑛+1
(+) ≡ 𝜔𝜔�−,𝑛𝑛+1 = 𝑘𝑘�𝑥𝑥𝑣𝑣�𝑝𝑝 − 𝜔𝜔�𝑟𝑟,𝑛𝑛+1 − 𝑖𝑖𝑖𝑖𝛾𝛾�𝑛𝑛+1

       where      
𝜔𝜔�𝑟𝑟,𝑛𝑛+1 =

1
√2

𝑘𝑘�

�ℎ𝑛𝑛2 + 𝑔𝑔𝑖𝑖𝑛𝑛2
�ℎ𝑛𝑛 + �ℎ𝑛𝑛2 + 𝑔𝑔𝑖𝑖𝑛𝑛2 �

1
2

𝛾𝛾�𝑛𝑛+1 =
1
√2

𝑘𝑘�

�ℎ𝑛𝑛2 + 𝑔𝑔𝑖𝑖𝑛𝑛2
�−ℎ𝑛𝑛 + �ℎ𝑛𝑛2 + 𝑔𝑔𝑖𝑖𝑛𝑛2 �

1
2
 (3.2-3) 

is the fixed-point iteration for ℎ𝑛𝑛 = 1 + 𝑘𝑘�2 + g𝑟𝑟𝑛𝑛. 

The real and imaginary part of the Gordeev function g ��𝜔𝜔�𝑛𝑛 − 𝑘𝑘�𝑦𝑦𝑉𝑉�𝑑𝑑�/𝜔𝜔�𝑐𝑐𝑒𝑒 , �𝑘𝑘�𝑥𝑥2 + 𝑘𝑘�𝑦𝑦2�𝑀𝑀�/𝜔𝜔�𝑐𝑐𝑒𝑒2 ,𝑘𝑘�𝑧𝑧2𝑀𝑀�/𝜔𝜔�𝑐𝑐𝑒𝑒2 � 

are g𝑟𝑟𝑛𝑛 and g𝑖𝑖𝑛𝑛, respectively and 𝑖𝑖 is the sign of −g𝑖𝑖𝑛𝑛. The process is repeated until convergence error 
of 10−8 is reached (Cavalier et al., 2013).  

3.3 Numerical solutions –  

And using the normalisations, 

𝑀𝑀𝑖𝑖 (kg) 𝐸𝐸0 (V/m) 𝐵𝐵0 (T) 𝑛𝑛𝑒𝑒 (𝑚𝑚−3) 𝑇𝑇𝑒𝑒 (eV) 𝑣𝑣𝑝𝑝 (m/s) 𝑇𝑇𝑖𝑖 (eV) 

2.2 ×  10−25 1 × 104 15 × 10−3 2 × 1017 25 16,000 10 

TABLE 3-1: Typical parameters at the exit plane of the Snecma 5kW PPSX000VR Hall thruster. 
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We have the normalised values as, 

The graphs are plotted in a new normalizing with the normalization factor being,  

𝑘𝑘0 =
𝜔𝜔𝑐𝑐𝑒𝑒
𝑉𝑉𝑑𝑑

      and     𝑘𝑘 𝜆𝜆𝐷𝐷� = 0.324𝑘𝑘 𝑘𝑘0�  

were 𝑘𝑘0 is called the fundamental resonance wavenumber (Villafana et al., 2021). 

3.3.1 Ducrocq Eq.– 

We have from Eq. 2.3-4, 

1 + 𝑘𝑘2𝜆𝜆𝐷𝐷2 + g�
𝜔𝜔 − 𝑘𝑘𝑦𝑦𝑉𝑉𝑑𝑑

𝜔𝜔𝑐𝑐𝑒𝑒
, �𝑘𝑘𝑥𝑥2 + 𝑘𝑘𝑦𝑦2�𝜌𝜌2,𝑘𝑘𝑧𝑧2𝜌𝜌2� −

𝑘𝑘2𝜆𝜆𝐷𝐷2𝜔𝜔𝑝𝑝𝑖𝑖
2

�𝜔𝜔 − 𝑘𝑘𝑥𝑥𝑣𝑣𝑝𝑝�
2 = 0 

And its normalised iterative expression from Eq. 3.2-1 is, 

�𝜔𝜔�𝑛𝑛+1 − 𝑘𝑘�𝑥𝑥𝑣𝑣�𝑝𝑝�
2 = 𝑘𝑘�2

1 + 𝑘𝑘�2 + 𝑔𝑔 �
𝜔𝜔�𝑛𝑛 − 𝑘𝑘�𝑦𝑦𝑉𝑉�𝑑𝑑

𝜔𝜔�𝑐𝑐𝑒𝑒
, �𝑘𝑘�𝑥𝑥2 + 𝑘𝑘�𝑦𝑦2�

𝑀𝑀�
𝜔𝜔�𝑐𝑐𝑒𝑒2

,𝑘𝑘�𝑧𝑧2
𝑀𝑀�
𝜔𝜔�𝑐𝑐𝑒𝑒2

�
�

 
(3.3-1) 

Heatmaps in Fig.  3-1 studies the effect of varying 𝛼𝛼, the angle between 𝑘𝑘�𝑥𝑥 and 𝑘𝑘�𝑦𝑦 components. The 

influence of 𝑘𝑘�𝑧𝑧 is studied by plotting the normalized angular frequency and growth rate against 𝑘𝑘�𝑦𝑦 in 

Fig.  3-2. For the lowest value of 𝑘𝑘�𝑧𝑧, sharp resonances are visible on both curves for all 𝑘𝑘�𝑥𝑥 with lower 

values being dominant. The growth rate is nearly zero except when 𝑘𝑘�𝑦𝑦𝑉𝑉𝑑𝑑 is close to a cyclotron harmonic. 
Six peaks are visible on the dispersion relation for 𝑘𝑘𝑦𝑦 ∕ 𝑘𝑘0 ∈ [0, 5.5] or 𝑘𝑘𝑦𝑦/𝜆𝜆𝐷𝐷 ∈ [0, 1.8], consistent with 

(Gary, 1970). The amplitude of the peaks increases with 𝑘𝑘�𝑦𝑦 until it reaches ~1. Increasing 𝑘𝑘�𝑧𝑧 smoothes 

the curves and the resonances are less visible. For a given 𝑘𝑘�𝑧𝑧, increasing 𝑘𝑘�𝑥𝑥 has a similar effect. For high 

values of 𝑘𝑘�𝑧𝑧, no more resonances are visible and both curves seem to be an average of the profiles at 

lower 𝑘𝑘�𝑧𝑧. For higher values of 𝑘𝑘�𝑧𝑧, the dispersion relations no longer changes. For any value of 𝑘𝑘�𝑧𝑧, for 

low values of 𝑘𝑘�𝑦𝑦 the dispersion relation does not go to zero but to 𝑘𝑘�⊥. For high values of 𝑘𝑘�𝑦𝑦, the 
normalized angular frequency approaches ~1. 

From the analysis of Sec. 2.4, it may be inferred that the first mode at 𝑘𝑘�𝑦𝑦~1 corresponds to MTSI while 
all other modes correspond to ECDI.  

𝜆𝜆𝐷𝐷 (m) 𝜔𝜔𝑝𝑝𝑖𝑖  (rad/s) 𝑐𝑐𝑠𝑠(m/s) 

8.3 × 10−5 5.1 × 107 4270 

TABLE 3-2: Values of the three parameters used for the normalization calculated from Table 3-1 

𝛼𝛼 𝑘𝑘�⊥ 𝑘𝑘�𝑧𝑧 𝑣𝑣�𝑝𝑝 𝑉𝑉�𝑑𝑑 𝑣𝑣�th, e 𝜔𝜔�𝑐𝑐𝑒𝑒 𝑀𝑀� 

0𝑜𝑜 − 360𝑜𝑜 0 − 2 0.045 3 150 491 50 2.4× 105 

TABLE 3-3: Typical normalized parameters used to calculate 
the angular frequency of the modes. 
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3.3.2 Modified Ducrocq Eq.– 

The modified Durcrocq equation Eq. 2.3-3, 

1 + 𝑘𝑘2𝜆𝜆𝐷𝐷𝑒𝑒2 + g�
𝜔𝜔 − 𝑘𝑘𝑦𝑦𝑉𝑉𝑑𝑑

𝜔𝜔𝑐𝑐𝑒𝑒
, �𝑘𝑘𝑥𝑥2 + 𝑘𝑘𝑦𝑦2�𝜌𝜌2,𝑘𝑘𝑧𝑧2𝜌𝜌2� −

𝑇𝑇𝑒𝑒
𝑇𝑇𝑖𝑖
�
𝑘𝑘 
2𝜆𝜆𝐷𝐷𝑖𝑖2 𝜔𝜔𝑝𝑝𝑖𝑖

2

�𝜔𝜔 − 𝑘𝑘𝑥𝑥𝑣𝑣𝑝𝑝�
2 − 𝑋𝑋� = 0  

                                                                             were 𝑋𝑋 =
𝑖𝑖√𝜋𝜋�𝜔𝜔 − 𝑘𝑘𝑥𝑥𝑣𝑣𝑝𝑝�σ

√2𝑘𝑘𝑧𝑧𝑣𝑣𝑇𝑇𝑖𝑖
exp−�

𝜔𝜔 − 𝑘𝑘𝑥𝑥𝑣𝑣𝑝𝑝
√2𝑘𝑘𝑧𝑧𝑣𝑣𝑇𝑇𝑖𝑖

�
2

 

While the normalised iterative form is, 

�𝜔𝜔�𝑛𝑛+1 − 𝑘𝑘�𝑥𝑥𝑣𝑣�𝑝𝑝�
2 

          = 𝑘𝑘�2

1 + 𝑘𝑘�2 + 𝑔𝑔 �
𝜔𝜔�𝑛𝑛 − 𝑘𝑘�𝑦𝑦𝑉𝑉�𝑑𝑑

𝜔𝜔�𝑐𝑐𝑒𝑒
, �𝑘𝑘�𝑥𝑥2 + 𝑘𝑘�𝑦𝑦2�

𝑀𝑀�
𝜔𝜔�𝑐𝑐𝑒𝑒2

,𝑘𝑘�𝑧𝑧2
𝑀𝑀�
𝜔𝜔�𝑐𝑐𝑒𝑒2

�+ 𝑖𝑖√𝜋𝜋𝜎𝜎
𝑇𝑇�

𝛺𝛺𝑖𝑖,𝑛𝑛
�2 𝑌𝑌𝑖𝑖

exp−�
𝛺𝛺𝑖𝑖,𝑛𝑛
�2 𝑌𝑌𝑖𝑖

�
2�

 (3.3-2) 

Here we treat 𝑋𝑋 as a perturbation over the original Ducrocq Equation. For ease of convergence and 
implementation the solution from the original Ducrocq numerical solution is fed into the perturbation, 
rather than initializing with a zero-like solution. 

The influence of 𝑘𝑘�𝑧𝑧 is studied by plotting the normalized angular frequency and growth rate against 𝑘𝑘�𝑦𝑦 
in Fig. 3-4. Heatmaps in Fig. 3-3 studies the effect of varying 𝛼𝛼, the angle between 𝑘𝑘�𝑥𝑥 and 𝑘𝑘�𝑦𝑦 
components. Here the temperature effects are very visible for lower values of 𝑘𝑘�, in particular 𝑘𝑘�𝑦𝑦. The 

same manifest as a small dip for lower 𝑘𝑘�𝑦𝑦 in the normalised angular frequency plots but has a severe 

effect in the growth rate where the mode 𝑘𝑘�𝑦𝑦~0.18 sees a drastic peak for 𝑘𝑘�𝑥𝑥~3. As was recognised 

earlier this first peak that is different from other peaks at integer values of 𝑘𝑘�𝑦𝑦 is the MTSI mode, and 

predicts a surprisingly high growth of MTSI mode for 𝑘𝑘�𝑥𝑥 > 3. 

3.3.3 General Dispersion relation -  

The normalised warm Hall thruster dispersion relation, Eq. 2.2-7, 

𝑘𝑘�2 +
1
𝑇𝑇�
�1 +

𝛺𝛺𝑖𝑖
�2 𝑌𝑌𝑖𝑖

𝑍𝑍 �
𝛺𝛺𝑖𝑖

�2 𝑌𝑌𝑖𝑖
��+ [1 + 𝑔𝑔(𝛺𝛺𝑒𝑒 ,𝑋𝑋𝑒𝑒  ,𝑌𝑌𝑒𝑒  )] = 0 

The fixed-point implementation uses Eq. 3.1-3, 

𝜔𝜔�𝑛𝑛+1 =  −
𝜔𝜔�𝑐𝑐𝑖𝑖�2 𝑌𝑌𝑖𝑖 �𝑇𝑇� �1 + 𝑘𝑘�2 + 𝑔𝑔�𝛺𝛺𝑛𝑛,𝑒𝑒 ,𝑋𝑋𝑒𝑒  ,𝑌𝑌𝑒𝑒  �� + 1�

𝑍𝑍 �
𝛺𝛺𝑛𝑛,𝑖𝑖

�2 𝑌𝑌𝑖𝑖
�

+ 𝑘𝑘�𝑥𝑥𝑣𝑣�𝑝𝑝 

Heatmaps in Fig.  3-5 identifies the effect of varying 𝛼𝛼, the angle between 𝑘𝑘�𝑥𝑥 and 𝑘𝑘�𝑦𝑦 components. The 

influence of 𝑘𝑘�𝑧𝑧 is studied by plotting the normalized angular frequency and growth rate against 𝑘𝑘�𝑦𝑦 in 
Fig.  3-6. Although an initial stability analysis of this non-linear equation seems to be consistent, a full-
fledged analysis is beyond the scope the manuscript. The result seems to suggest a strong damping for 

large 𝑘𝑘�𝑦𝑦 and the damping resonating with higher ECDI for lower 𝑘𝑘�𝑧𝑧 values. 
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Fig.  3-1: Heatmap of 𝜔𝜔� vs �𝑘𝑘�𝑥𝑥, 𝑘𝑘�𝑦𝑦� for different values of 𝑘𝑘�𝑧𝑧 of Ducrocq relation, Eq. 3.3-1. Dashed outlines 

represent contours of 𝑘𝑘�⊥2 ≡ 𝑘𝑘�𝑥𝑥 +  𝑘𝑘�𝑦𝑦 = const.  
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Fig.  3-2: A plot of 𝜔𝜔� vs �𝑘𝑘�𝑥𝑥, 𝑘𝑘�𝑦𝑦� for different values of 𝑘𝑘�𝑧𝑧 of Ducrocq relation, Eq. 3.3-1. Dashed outlines 

represent contours of 𝑘𝑘�⊥2 ≡ 𝑘𝑘�𝑥𝑥 +  𝑘𝑘�𝑦𝑦 = const.  
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Fig.  3-3: Heatmap of 𝜔𝜔� vs �𝑘𝑘�𝑥𝑥, 𝑘𝑘�𝑦𝑦� for different values of 𝑘𝑘�𝑧𝑧 of the modified Ducrocq relation, Eq. 3.3-2. 

Dashed outlines represent contours of 𝑘𝑘�⊥2 ≡ 𝑘𝑘�𝑥𝑥 +  𝑘𝑘�𝑦𝑦 = const.  
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Fig.  3-4: A plot of 𝜔𝜔� vs �𝑘𝑘�𝑥𝑥, 𝑘𝑘�𝑦𝑦� for different values of 𝑘𝑘�𝑧𝑧 of the modified Ducrocq relation, Eq. 3.3-2. 

Dashed outlines represent contours of 𝑘𝑘�⊥2 ≡ 𝑘𝑘�𝑥𝑥 +  𝑘𝑘�𝑦𝑦 = const. 
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Fig.  3-5: Heatmap of 𝜔𝜔� vs �𝑘𝑘�𝑥𝑥, 𝑘𝑘�𝑦𝑦� for different values of 𝑘𝑘�𝑧𝑧 of the general dispersion relation, Eq. 3.1-3. 

Dashed outlines represent contours of 𝑘𝑘�⊥2 ≡ 𝑘𝑘�𝑥𝑥 +  𝑘𝑘�𝑦𝑦 = const.  
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Fig.  3-6: A plot of 𝜔𝜔� vs �𝑘𝑘�𝑥𝑥, 𝑘𝑘�𝑦𝑦� for different values of 𝑘𝑘�𝑧𝑧 of the general dispersion relation, Eq. 3.1-3. 

Dashed outlines represent contours of 𝑘𝑘�⊥2 ≡ 𝑘𝑘�𝑥𝑥 +  𝑘𝑘�𝑦𝑦 = const. 
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3.4 Further prospects 

- The dispersion equation for this problem Eq. 2.2-6 was derived assuming that the particles had 
Maxwellian or shifted Maxwellian velocity distributions. The dissipative instabilities described in this 
manuscript are all very sensitive to the form of the velocity distribution and may be have very 
different consequences depending on the distribution profile. 

- We have neglected the gradient effects for low-𝛽𝛽 plasma (ratio of electron pressure to magnetic 
pressure) case where the 𝐸𝐸0 × 𝐵𝐵0 drift is found to dominate. If the gradient effects are put in, then 
the electromagnetic terms should also be included. 

- A temperature dependence analysis has not been included in this manuscript, which will provide 
valuable insights into the micro-instabilities at hand. 

- The numerical solution of the General dispersion relation requires a much more vigorous take to fully 
comprehend the analysis.  
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