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Abstract 

In this report we study Symplectic Geometry, an outgrowth of classical mechanics. 

We give a comprehensible introduction and further provide an elementary 

introduction to its counterpart in mathematical physics known as geometric 

quantization, a way of passing from a classical mechanical system to a quantum 

mechanical system by methods from symplectic geometry. 
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Introduction 

“Geometry is the archetype of 

the beauty of the world.” 

Johannes Kepler 

The mathematical theory underlying Hamiltonian mechanics is currently called Symplectic Geometry. 

It essentially started off as an outgrowth of classical mechanics. Due to its importance, it is now widely 

used in various fields of Mathematical Physics including Classical Mechanics, Quantum Mechanics (via 

geometric quantization, deformation quantization), representations of Lie groups – “the Kirillov’s orbit 

method”, PDEs (via microlocal analysis), Gauge Theory, geometric invariant theory in algebraic 

geometry, et cetera.  

There has been a lot of active study recently in the disciplines of Symplectic Geometry. Understanding 

the geometry of dynamical systems and the process of "quantization" as applied not only to the theory of 

dynamical systems, but also as a vital tool in the analysis of group representations has made significant 

advances in symplectic geometry. The topic is recent versions of a themes that have dominated 

mathematical thought for the past three centuries - the relations between the wave and the corpuscular 

theories of light. We shall be taking up the subject of Symplectic geometry in whole its glory, followed 

by a light discussion on Geometric Quantization.  

 

The presumed structure of this article is to start with a MOTIVATION – asking the question why are 

we doing what we are doing, every once in a while, followed by DEFINITIONS and THEOREMS. 

These may further be enumerated by REMARKS, wherever required, which is usually additional 

comments and examples illustrating the process. 

We shall assume some elementary knowledge of Differential Topology, say, Charts and Coordinate 

Maps, Push forwards and Pull backs, Tangent fields and bundles, Projection and Section Maps. Some 

topics including Differential forms and Lie Groups are covered in the next two sections for completeness. 

Unless explicitly stated otherwise, the spaces we will be dealing with are assumed to be Hausdorff, second 

countable with 𝐶∞ maximal atlases. Further the associated topology, if needs be, may be assumed to be 

the canonical topology i.e., open balls.  

We won’t be necessarily differentiating between 𝐶𝑛 and 𝐶∞ which is because of the following theorem:  

THEOREM:   (Whitney) Any maximal 𝐶𝑘-atlas, with 𝑘 > 1, contains a 𝐶∞-atlas. Moreover, any 

two maximal 𝐶𝑘- atlases that contain the same 𝐶∞-atlas are identical. 

1.  Differential Forms  

MOTIVATION: We require integration under curves/simplexes in a differential manifold to be 

coordinate independent (independent of choice of charts), which naturally gives rise an important class 

of objects that remain invariant under coordinate transformation. Furthermore, manifolds don’t 

inherently come with any notion of their size: we shall see the basic additional extra structure that makes 

these possible. 

DEFINITION 1.1: An exterior form of degree k, or a k-form, denoted 𝜔𝑘 is a 𝐶𝑛 differentiable map 

of 𝑘 tangent vectors to ℝ, which is k-linear and skew-symmetric.  

To enumerate the properties, for 𝜉𝑖 ∈ 𝑇𝑀 and a k-form, 𝜔𝑘,  

- K-Linear:  

𝜔𝑘(𝜉1, … , 𝜆𝑖𝜉𝑖 + 𝜆𝑗𝜉𝑗, … 𝜉𝑖) = 𝜆𝑖𝜔
2(𝜉1, … , 𝜆𝑖𝜉𝑖 + 𝜆𝑗𝜉𝑗 , … 𝜉𝑖) + 𝜆𝑗𝜔

2(𝜉1, … , 𝜆𝑖𝜉𝑖 + 𝜆𝑗𝜉𝑗, … 𝜉𝑖) 

- Skew symmetric under exchange:  

𝜔𝑘( 𝜉𝑖1 , … , 𝜉𝑖𝑘) = 𝒫
𝑘𝜔𝑘(𝜉1, … , 𝜉𝑘)   where 𝒫𝑘 is the permutation tensor of rank 𝑘 

https://quotefancy.com/johannes-kepler-quotes
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This would mean that, say for 𝜔2, 𝜔2(𝜉1, 𝜉2) = −𝜔
2(𝜉2, 𝜉1) i.e., this is essentially the signed area 

of parallelogram with sides 𝜉1, 𝜉2. Readers may also note the similarity between this and the 

2 × 2 determinant,det(𝜉𝑖) which is also an alternate representation
1

 of a signed area of the 

parallelogram. 

REMARKS – 

- Geometrically, k-forms represent the oriented “volume” of k-parallelotope.  

- Linearity and k-linearity are NOT the same thing. The map 𝑓:ℝ2 → ℝ given by (𝑥, 𝑦) ↦ 𝑥 + 𝑦 is 

linear but not bilinear, while the map (𝑥, 𝑦) ↦ 𝑥𝑦 is bilinear but not linear. 

DEFINITION 1.2: Given a 1-forms 𝛼1, … , 𝛼𝑘 on V, we define their k
th

 exterior product or wedge 

product to be the k-form action on 𝜉1, ⋯ , 𝜉𝑘 ∈ 𝑇𝑀 by: 

(𝛼1 ∧ …∧ 𝛼𝑘)(𝜉1,⋯ , 𝜉𝑘) ≔ 𝜔𝑘(𝜉1, ⋯ , 𝜉𝑘) 

- The wedge product is essentially an Anti-symmetrized Tensor product of dual vectors. 

PROPOSITION: By the property of determinants (signed volume of vectors), 𝜔𝑘(𝜉1, ⋯ , 𝜉𝑘) may be 

treated as det 𝛼𝑖(𝜉𝑗). 

THEOREM 1.1: For an n-dimensional vector space V, the maximal k-form which is the n-form is 

called the Volume form, and every n-form on V is a scalar multiple of 𝑥1 ∧ …∧ 𝑥𝑛 where 𝑥𝑖 are the 

dual vectors from a basis of V.  

REMARK – 

- We call it the volume form for the obvious reason that it measures volumes in V. 

- The space of k-forms forms a vector space, ⋀ 𝑉∗𝑘  . Each such k-form on V gives us a way of 

measuring the signed volume inside the vector space V.  

We shall be interested in tangent space, 𝑇𝑥𝑀, to some point 𝑥 of some manifold M, i.e., for us 𝑉 ≡

𝑇𝑥𝑀.
2

 And so, the form will measure the infinitesimal “areas” of a set of tangent vectors, that is to say 

that in our context k-forms will “eat” k tangent vectors, 𝜉𝑖 ∈ 𝑇𝑥𝑀 and “spit out” a real number, 

For 𝜔𝑘 ∈ ⋀𝑘𝑇𝑥
∗𝑀,    𝜔𝑘: 𝑇𝑥𝑀

(1) × …× 𝑇𝑥𝑀
(𝑘) → ℝ 

As an illustration we shall write a general k-form in local coordinates: 

Suppose (𝑈 ⊂ 𝑋, 𝜙) be a local coordinate chart of k-dimensional manifold 𝑋 and denote the coordinate 

maps 𝜙𝑖 ≡ 𝑥𝑖 (functions that map points in submanifold 𝑈 to ℝ). And we know that the tangent vector 

at some point �̅� ∈ 𝑈 may be represented as 
𝜕

𝜕𝑥𝑖
|
�̅�
, where �̅� ≡ (𝑦1,⋯ , 𝑦𝑘), and so the dual to that may 

be represented by ⅆ𝑥𝑖|�̅� ≡ ⅆ�̅�𝑥𝑖. We may build up the dual basis at �̅� using wedge products as, 

ⅆ�̅�𝑥𝑖1 ∧ …∧ ⅆ�̅�𝑥𝑖𝑘   for  𝑖1 < ⋯ < 𝑖𝑘 

Thus, a general k-form 𝛼 in 𝑈 ⊂ 𝑋 would be (in local coordinates) at point �̅� ∈ 𝑈: 

𝜔𝑘�̅� = ∑ 𝑎𝑖1⋯𝑖𝑘(�̅�)ⅆ�̅�𝑥𝑖1 ∧ ⋯∧ ⅆ�̅�𝑥𝑖𝑘
𝑖1<⋯<𝑖𝑘

 ... 1-1 

MOTIVATION: To be able to use k-forms and do calculus with it on manifold we would atleast require 

differentiable assignments at every point 𝑥. Thus, we are motivated to define differential k-forms. 

DEFINITION 1.3: A differential k-form (or sometimes just a k-form) 𝛼 on a manifold 𝑋 is a smooth 

assignment of a k-form 𝛼𝑥 ∈ ⋀
𝑘𝑇𝑥

∗𝑥 for all 𝑥 ∈ 𝑋. We denote the vector space of differential k-forms 

on 𝑋 by 𝛺𝑘(𝑋). 

 
1

 A representation is a very general relationship that expresses similarities (or equivalences) between mathematical objects or 

structures. 
2

 Tangent space is a vector space. 
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ILLUSTRATION - 

As we have already illustrated before (2-1) a general k-form 𝛼 at �̅� ∈ 𝑈 would be (in local coordinates): 

𝜔𝑘�̅� = ∑ 𝑎𝑖1⋯𝑖𝑘(�̅�)ⅆ�̅�𝑥𝑖1 ∧ ⋯∧ ⅆ�̅�𝑥𝑖𝑘
𝑖1<⋯<𝑖𝑘

 

Just like the idea of tangent fields, the k-form 𝜔𝑘 is smooth precisely when 𝑎𝑖1⋯𝑖𝑘(�̅�) is a smooth function 

of �̅� ∈ 𝑋, in which case we simply denote it as, 

𝛼 = ∑ 𝑎𝑖1⋯𝑖𝑘ⅆ𝑥𝑖1 ∧ ⋯∧ ⅆ𝑥𝑖𝑘
𝑖1<⋯<𝑖𝑘

 

- Note that all k-forms on 𝑈 ≅ ℝ𝑛 takes precisely this form. (Theorem 4.1) 

1.1.  TRANSFORMATION RULE 

MOTIVATION: We shall now see that differential forms are indeed precisely defined under coordinate 

transformations. Unlike tangent vectors which are geometric objects, differential forms may be better 

thought of as maps that “eat” tangent vectors. Hence, just like the nature thing to do with tangent vectors 

are push forwards, the natural thing to do with maps, for that matter differential forms, are pullbacks. 

We shall now define the pullback of differential forms: 

DEFINITION 1.4: Suppose 𝛼 ∈ 𝛺𝑘(𝑌) and suppose 𝐹: 𝑋 → 𝑌 is a smooth map between 

overlapping charts of manifold; then we define the pullback 𝐹∗(𝛼) ∈ 𝛺𝑘(𝑌) of 𝛼 to be the k-form 

on 𝑋 that act on vectors via: 

𝐹∗𝛼𝑥(𝜉1, … , 𝜉𝑘) = 𝛼𝐹(𝑥)(𝐷𝑥𝐹(𝜉1),… , 𝐷𝑥𝐹(𝜉𝑘)) 

ILLUSTRATION: To illustrate this in local coordinates: 

Suppose we have a map, 𝐹, between two local coordinates, 𝐹: (𝑈, 𝜙) → (𝑈,𝜓): 𝑥𝑖 ↦ 𝑦𝑖 ≡

𝐹𝑖  (𝑥1, … , 𝑥𝑛) and a n-differential form – 

𝛼𝑦 = 𝑎(𝑦)d𝑦1 ∧ ⋯∧ d𝑦𝑛 

Then 𝐹∗(𝛼) is given by-  

𝐹∗(𝛼)𝑥(𝑣1, … , 𝑣𝑛) = 𝑎(𝐹(𝑥))d𝑦1 ∧ ⋯∧ d𝑦𝑛(𝐷𝑥𝐹(𝑣1), … , 𝐷𝑥𝐹(𝑣𝑛))

= (𝑎 ∘ 𝐹)(𝑥)det (d𝑦𝑖 (𝐷𝑥𝐹(𝑣𝑗))) = (𝑎 ∘ 𝐹)(𝑥)det (𝐷𝑥𝐹𝑖(𝑣𝑗))

= (𝑎 ∘ 𝐹)(𝑥)det (∑  

𝑛

𝑘=1

∂𝐹𝑖

∂𝑥𝑘
𝑣𝑗
𝑘) = (𝑎 ∘ 𝐹)(𝑥)det (

∂𝐹𝑖

∂𝑥𝑘
)det (𝑣𝑗

𝑘) 

by the multiplicative properties of determinants, we have the transformation rule for differential forms: 

𝐹∗(𝛼)𝑥 = (𝑎 ∘ 𝐹)(𝑥)det (𝐷𝑥𝐹)d𝑥1 ∧ ⋯∧ d𝑥𝑛 ... 1-2 

This is way too familiar for us since this is exactly the change of variables rule for multivariable integration, 

using the Jacobian determinant. 

REMARK: 

- In fact, Eq 2-2 is a more general version of change of variable rule, as you might recollect that the in 

the original formula for Reimann Integral, the change of volume factor is actually |det (𝐷𝑥𝐹)|, which 

is because we implicitly assume that the manifold to be orientable.  

DEFINITION 1.5: An orientation of a manifold X is a choice of charts (𝑈𝑖, 𝜙𝑖) that cover 𝑋 and so 

that the transition maps 𝜙𝑗 ∘ 𝜙𝑖
−1  are orientation-preserving. We say X is orientable if such an 

orientation exists. Further, the transition maps are orientation-preserving if det(𝐷𝑥𝐹) > 0. 

- Thus, the two formulas coincide for an orientation-preserving map 𝐹. 

MOTIVATION: This brings us to a very important application of differential forms, namely for 

integration that takes advantage of this invariant property.   
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THEOREM 1.2: Given an n-manifold 𝑋 with an orientation, and 𝛼 an n-form on 𝑋 with compact 

support, there is a well-defined integral 

∫  
𝑋

𝛼 ∈ ℝ 

that is linear in α and satisfies the invariance property that for any diffeomorphism 𝐹: 𝑌 → 𝑋 

∫ 
𝑌

𝐹∗(𝛼) = ∫  
𝑋

𝛼 

1.2.  APPLICATION IN PHYSICS 

- The electromagnetic field strength F is a differential 2-form built from the electric and magnetic 

fields, which in turn are 1-forms. 

- In classical mechanics, if Q is a smooth manifold describing the possible system configurations, then 

the phase space is T∗Q, which is in fact a symplectic space.  

1.3.  DERIVATIVES OF DIFFERENTIAL FORMS  

DEFINITION 1.6: The exterior derivative of a k-form α on X is a (𝑘 + 1) −form ⅆ𝛼 ∈ 𝛺𝑘+1(𝑋), 

defined as follows: if 𝛼 can be written in a local coordinate chart as, 

𝛼 = ∑  

𝑖1<⋯<𝑖𝑘

𝑎𝑖1…𝑖𝑘(𝑥)d𝑥𝑖1 ∧ ⋯∧ d𝑥𝑖𝑘   then   d𝛼 = ∑  

𝑖1<⋯<𝑖𝑘

∑ 

𝑛

𝑗=1

∂𝑎𝑖1…𝑖𝑘(𝑥)

∂𝑥𝑗
d𝑥𝑗 ∧ d𝑥𝑖1 ∧ ⋯∧ d𝑥𝑖𝑘  

REMARK: 

Derivative of exterior product is in fact the generalization of differential vector operators as seen below: 

Let 𝑋 ≡ ℝ3 with the usual basis 𝑒1, 𝑒2, 𝑒3, and recollect that the k-forms on ℝ3 belong to the dual space 

of (ℝ3)∗, 

- Gradient operator: 

For a smooth function 𝑓 on ℝ3,  

d𝑓 =
𝜕𝑓

𝜕𝑥𝑖
d𝑥𝑖1 ≡ 𝛻𝑓 ⋅ d𝑥 ∈ ⋀

1(ℝ3)∗ 

- Curl operator: 

For a 1-form 𝛼 on ℝ3,  

d𝛼 ≡ ⅆ(𝑎1 d𝑥 + 𝑎2 d𝑦 + 𝑎3 d𝑧) = (
𝜕𝑎𝑦

𝜕𝑥
−
𝜕𝑎𝑥
𝜕𝑦
)d𝑥 ∧ d𝑦 +⋯ ∈ ⋀2(ℝ3)∗ 

- Divergence Operator: 

For a 2-form 𝛽 on ℝ3, 

d𝛽 ≡ ⅆ(𝑎𝑥𝑦 d𝑥 ∧ d𝑦 + 𝑎𝑥𝑧 d𝑥 ∧ d𝑧 + 𝑎𝑦𝑧 d𝑦 ∧ d𝑧) = (
𝜕𝑎𝑥𝑦

𝜕𝑧
+
𝜕𝑎𝑥𝑧
𝜕𝑦

+
𝜕𝑎𝑦𝑧

𝜕𝑥
)d𝑥 ∧ d𝑦 ∧ d𝑧

∈ ⋀2(ℝ3)∗ 

PROPOSITIONS: Let 𝛼 be a k-form and 𝛽 be an ℓ-form and let 𝐹: 𝑋 → 𝑌 be a smooth transition map 

on some manifold M. Then we have, 

- Pullback: 𝐹∗(d𝛼) = d𝐹∗(𝛼) and 𝐹∗(𝛼 ∧ 𝛽) = 𝐹∗(𝛼) ∧ 𝐹∗(𝛽) 

This follows because the exterior products are coordinate independent. 

- Exterior Derivative of wedge product: d(𝛼 ∧ 𝛽) = d𝛼 ∧ 𝛽 + (−1)𝑘𝛼 ∧ d𝛽 

- Fundamental Cohomology result:  

d(d𝛼) = 0 ... 1-3 

It follows that div ∘ curl = 0 and curl ∘ grad = 0. The proof for this makes use of the fact that 

order of mixed partial derivatives for smooth functions can be interchanged (Clairaut's theorem). 

2.  Lie Algebra 

DEFINITION 2.1: A Lie group is a manifold G along with smooth maps 𝑚:𝐺 × 𝐺 → 𝐺 called 

multiplication and 𝑖: 𝐺 → 𝐺 called inversion, as well as a distinguished point 𝑒 ∈ 𝐺, that together 
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satisfy the axioms to be a group: namely, m is associative, 𝑒 is a left and right identity, and every 

element has a (two-sided) inverse given by 𝑖. 

Further, just as for usual groups we may define: 

DEFINITION 2.2: A (left) action of a Lie group G on a manifold X is a smooth map 𝑎: 𝐺 × 𝑋 → 𝑋, 

written (𝑔, 𝑥) ↦ 𝑔 ⋅ 𝑥, that defines an action of the group 𝐺 on the set 𝑋, that is, 𝑒 acts as the identity 

map, and (𝑔ℎ) ⋅ 𝑥 = 𝑔 ⋅ (ℎ ⋅ 𝑥). We say that G gives a smooth symmetry of X.  

To illustrate the close association of the action of Lie group and symmetric consider the following: 

- Notice that ℝ𝑛 is a Lie group under the addition map, 𝑚:ℝ𝑛 ×ℝ𝑛 → ℝ𝑛: (𝑥, 𝑦) ↦ 𝑥 + 𝑦 and the 

map 𝑖: ℝ𝑛 → ℝ𝑛: 𝑥 ↦ −𝑥 with 𝑒 = 0 (the smoothness of these maps may be easily verified). Then 

the action of Lie Group 𝐺 ≡ ℝ𝑛 acts on ℝ𝑛 by translation. This captures the notion that ℝ𝑛 has a 

translation-symmetry. 

- Very similarly, the group of rotations of ℝ𝑛, SO(𝑛) ⊂ GL𝑛(ℝ) also forms a Lie group and the action 

of this group on ℝ𝑛 is essentially rotation. This captures the notion that ℝ𝑛 has a rotational-symmetry. 

DEFINITION 2.3: The Lie algebra 𝔤 of a Lie group 𝐺 is the tangent space 𝑇𝑒𝐺 at the identity of 𝐺. 

REMARK – 

- Given any 𝑣 ∈ 𝑇𝑒𝐺, we can form a vector field 𝑋𝑣 anywhere on 𝐺 by using the multiplication map to 

transport the vector around. Hence without loss of generality we may take tangent vector at any point 

in 𝐺 and not necessarily identity element. 

MOTIVATION: It may not be evident how such a construction forms an algebra. Following we shall 

illustrate how such a system already has an algebraic structure (through Lie bracket). 

If we let 𝐿𝑔: 𝐺 → 𝐺 denote the map given by left multiplication by 𝑔 ∈ 𝐺, then its derivative defines a 

map ℒ𝑒𝐿𝑔: 𝑇𝑒𝐺 → 𝑇𝑔𝐺. More generally, for 𝑒 ≡ 𝑥𝑜 we shall consider the following define for Lie 

derivative: 

2.1.  LIE DERIVATIVES 

MOTIVATION: Lie derivatives are one way of comparing two things (geometric objects like tangent 

vectors or differential forms) at two different spaces by use of pullback. 

- Lie derivative of two Vectors – 

ℒ𝑋𝑌(𝑥0) = lim
𝜀→0
[
�̃�|
𝑥0
− 𝑌|𝑥0

𝜀
] ≔ [𝑋, 𝑌] 

- Lie derivative of a scalar – 

ℒ𝑋𝑓(𝑥0) = 𝑋(𝑓(𝑥0)) 

2.2.  PROPERTIES OF LIE BRACKET 

- Antisymmetry: ℒ𝑋𝑌 = [𝑋, 𝑌] = −[𝑌, 𝑋] = −ℒ𝑌𝑋 

- Bilinearity: [𝑋, 𝑌 + 𝑍] = [𝑋, 𝑌] + [𝑋, 𝑍] and [𝑋 + 𝑍, 𝑌] = [𝑋, 𝑌] + [𝑍, 𝑌] 

- Leibnitz rule: ℒ𝑋𝑌𝑍 = 𝑌(ℒ𝑋𝑍) + (ℒ𝑋𝑌)𝑍 

- Jacobi Identity: [𝑋, [𝑌, 𝑍]] + [𝑌, [𝑍, 𝑋]] + [𝑍, [𝑋, 𝑌]] = 0 

[ℒ𝑋, ℒ𝑌]𝑍 = [𝑋, [𝑌, 𝑍]] − [𝑌, [𝑋, 𝑍]] = [𝑋, [𝑌, 𝑍]] + [𝑌, [𝑍, 𝑋]] = +[𝑍, [𝑋, 𝑌]] = ℒ[𝑋,𝑌]𝑍 

2.3.  CARTAN’S MAGIC FORMULA  

THEOREM 2.1: (Cartan’s Magic Formula) The Lie derivative of a differential form is given by  

ℒ𝑣𝛼 = d𝜄𝑣𝛼 + 𝜄𝑣d𝛼 ... 2-1 

where 𝜄𝑣 is the interior product with a vector field defined above. 

This is a pictorial representation of pulling 

back 𝑌|𝑞 to point 𝑥0 along the flow 𝑓. 
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PROOF: Although this may be easily verified in local coordinates (as shown below), actual proof is more 

subtle and interested reader may refer any standard differential manifold text, say (Loomis & Sternberg, 

2014).  

VERIFICATION: Let 𝜔 ∈ 𝛺1(𝑚) ≔ 𝜔𝜇 d𝑥
𝜇 and X = 𝑋𝜇 𝜕 𝜕𝑥𝜇⁄ , then,  

d(𝜄𝑋𝜔) = ∂𝜈(𝑤𝜇𝑋
𝜇) d𝑋𝜈 

And,  

𝜄𝑋ⅆ𝜔 = 𝜄𝑋
1
2⁄ [𝜕𝜈𝜔𝜇 ⅆ𝑥

𝜈 ∧ ⅆ𝑥𝜇 + 𝜕𝜇𝜔𝜈 ⅆ𝑥
𝜇 ∧ ⅆ𝑥𝜈] 

= 1 2⁄ [𝑋𝜇 ∂𝜈𝜔𝜇 − X
𝜇 ∂𝜇𝜔

𝜈] 

Hence,  

d(𝜄𝑋𝜔) + 𝜄𝑋ⅆ𝜔 = ℒ𝑋𝜔   or     𝒅𝜾𝑿 + 𝜾𝑿𝒅 = 𝓛𝑿 

REMARKS – 

- This is essentially a relation that relates Lie derivative, exterior derivative, and interior product. 

2.4.  POISSON BRACKET 

DEFINITION 2.4: The Poisson bracket of two functions 𝑓, 𝑔 ∈ 𝐶∞(𝑀;ℝ) is 

{𝑓, 𝑔} ≔ 𝜔(𝑋𝑓 , 𝑋𝑔)
coordinates

→       ∑
𝜕𝑓

𝜕𝑞𝑖

𝜕𝑔

𝜕𝑝𝑖
−
𝜕𝑓

𝜕𝑝𝑖

𝜕𝑔

𝜕𝑞𝑖

𝑁

𝑖=1

 

REMARK –  

- A Poisson algebra is an associative algebra together with a Lie bracket that also satisfies Leibniz's law. 
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Symplectic Geometry 

“Everything is a Lagrangian 

submanifold.” 

Alan Weinstein 

3.  Symplectic Space 

Let V be a finite dimensional vector space over R. 

DEFINITION 3.1: An antisymmetric, nondegenerate bilinear form (non-degenerate 2-form) on 𝑉 is 

called a symplectic form.  

To state the properties explicitly, a symplectic bilinear form is a mapping 𝜔:𝑉 × 𝑉 → 𝑅 that is 

- Bilinear: linear in each argument separately, 

- Alternating: 𝜔(𝑣, 𝑣) = 0 holds for all 𝑣 ∈ 𝑉, and 

- Nondegenerate: 𝜔(𝑢, 𝑣) = 0 for all 𝑣 ∈ 𝑉 implies that 𝑢 is zero. (𝐝𝐢𝐦𝑽 = 𝟐𝒏) 

DEFINITION 3.2: A vector space possessing a given symplectic form is called a symplectic vector 

space (𝑉, 𝛺), or is said to have a symplectic structure. 

DEFINITION 3.3: Space possessing a given symplectic form is called a symplectic vector space 

(𝑉, 𝛺), or is said to have a symplectic structure. 

DEFINITION 3.4: A linear map 𝐴:ℝ2𝑛 → ℝ2𝑛 that gives a symplectomorphism of the canonical 

symplectic form J on ℝ2𝑛, that is: 

𝐴𝑇𝐽𝐴 = 𝐽 

is called a symplectic transformation. We denote the group of such transformations by Sp(2𝑛) and 

call it the symplectic group. 

REMARK –  

- A Lie group G acting on X a symplectic manifold acts symplectically if every map 𝛷𝑔: 𝑋 → 𝑋 given 

by 𝑥 ↦ 𝑔 · 𝑥 is a symplectomorphism. 

THEOREM 3.1: (Multilinear Algebra): Let Ω be a skew-symmetric bilinear map on V. Then there 

is a basis 𝑢1, … , 𝑢𝑘, … , 𝑒1, … , 𝑒𝑛, 𝑓1, … , 𝑓𝑛 of 𝑉 such that 

Ω(𝑢𝑖, 𝑣)    = 0,      for all 𝑖 and all 𝑣 ∈ 𝑉,

Ω(𝑒𝑖, 𝑒𝑗)    = 0 = Ω(𝑓𝑖, 𝑓𝑗),      for all 𝑖, 𝑗, and 

Ω(𝑒𝑖, 𝑓𝑗)    = 𝛿𝑖𝑗 ,      for all 𝑖, 𝑗.

 

REMARK –  

- This basis decomposition is not unique. 

- 𝑘 + 2𝑛 = dim𝑉; 𝑛 is invariant of (𝑉, Ω), 2𝑛 is rank of 𝛀 

COROLLARY: From the requirement of nondegeneracy for Symplectic space, it follows that every 

symplectic space is even-dimensional. 

A symplectic vector space (𝑉, 𝛺) has a basis (𝑒1, … , 𝑒𝑛, 𝑓1, … , 𝑓𝑛) satisfying 𝛺(𝑒𝑖, 𝑓𝑗) = 𝛿𝑖𝑗 and 

𝛺(𝑒𝑖, 𝑒𝑗) = 0 = 𝛺(𝑓𝑖 , 𝑓𝑗) Such a basis is called a symplectic basis of (𝑉, 𝛺). 

Hence,  Ω(u, v) = [− u −] 
0 In
−In 0

൨ [
 ∣  
v

 ∣  
] 1 ≡ 𝑢𝑇𝐽𝑣    where u,  v ∈ V × V ... 3-1 
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4.  Symplectic Manifold 

DEFINITION 4.1: A symplectomorphism or canonical transformation ϕ between symplectic vector 

spaces (𝑉, Ω) and (𝑉′, Ω′) is a linear isomorphism 𝜙 : 𝑉 →̃ 𝑉  such that 𝜙∗Ω′ = Ω.  

REMARKS –  

- In the context of manifolds, various authors tend to include diffeomorphism in the definition. 

- By definition of pullback, (𝜑∗𝛺′)(𝑢, 𝑣)𝛺′(𝜙(𝑢), 𝜙(𝑣)) 

- If a symplectomorphism exists, (𝑉, Ω) and (𝑉′, Ω′) are said to be symplectomorphism. 

- Symplectomorphism form an Equivalence Relation. 

DEFINITION 4.2: A manifold 𝑀 is symplectic if it contains an addition structure of closed de-Rham 

2-form, 𝜔 on 𝑀 and denote a Symplectic Manifold as the pair (𝑀,𝜔). 

DEFINITION 4.3: A de-Rham 2-form / exterior 2-form is a map 𝜔𝑝: 𝑇𝑃𝑀 × 𝑇𝑝𝑀 → ℝ such that for 

each 𝑝 ∈ 𝑀, 𝜔𝑝 is skew-symmetric bilinear on the tangent space to 𝑴 at 𝒑, and 𝜔𝑝 varies smoothly 

in p. 

Example – For 𝑀 = ℝ2𝑛 with linear coordinates 𝑥1, … , 𝑥𝑛, … , 𝑦1, … , 𝑦𝑛 called canonical basis we have 

the symplectic form, 

𝜔 =∑ⅆ𝑥𝑖

𝑛

𝑖=1

∧ ⅆ𝑦𝑖 

called the Canonical Symplectic Form. 

MOTIVATION: Symplectic manifold is a peculiar space that allows us to do Hamiltonian Mechanics. 

More specifically, it turns out that the Cotangent Bundle (ℝ2𝑛) of Position space (ℝ𝑛) is in fact the 

Phase Space with an inherent 2-form, the analogue of Poisson Bracket (Theorem 4.1). 

4.1.  DARBOUX’S THEOREM 

THEOREM 4.1: (Darboux, 1882) Suppose (𝑋, 𝜔) is a 2n-dimensional symplectic manifold; then 

for every 𝑥 ∈ 𝑋 there is a coordinate chart (𝑈, 𝜙) with 𝑥 ∈ 𝑈 such that 𝜙 gives a symplectomorphism 

between (𝑈, 𝜔) and an open subset of ℝ2𝑛 ≡ 𝑇∗ℝ𝑛 called Darboux Chart, with the canonical 

symplectic form, 

𝜔 =∑d𝑥𝑖

𝑛

𝑖=1

∧ d𝑦𝑖 

PROOF: The proof is very involved and beyond the scope of this manuscript. Interested readers may 

refer to any Symplectic Geometry text, including (Cannas da Silva, 2008). 

REMARKS – 

- This essentially means that there is no local symplectic geometry: all symplectic manifolds locally 

look the same! This is in stark contrast to Riemannian geometry, where there is a whole suite of 

different local invariants given by various kinds of curvatures. 

4.2.  COTANGENT BUNDLE AS A SYMPLECTIC MANIFOLD 

Let 𝑋 be any n-dimensional manifold with coordinate charts (𝑈, 𝑥1, … , 𝑥𝑛) for 𝑥 ∈ 𝑈 with 𝑥𝑖: 𝑈 → 𝑅 

and 𝑀 = 𝑇∗𝑋 its cotangent bundle.  It follows that the differentials (ⅆ𝑥1)𝑝, … , (ⅆ𝑥𝑛)𝑝 form a basis of 

the cotangent space at 𝑝, 𝑇𝑝
∗𝑋 and so the Transition functions between charts are contravariant 

transformations. 

Hence, we have the induced map, 

𝑇∗𝑈 → ℝ2𝑛: (𝑥, 𝜁) ↦ (𝑥1, … , 𝑥𝑛, 𝜁1, … , 𝜁𝑛) 

where 𝑥1, … , 𝑥𝑛, 𝜁1, … , 𝜁𝑛 are the cotangent coordinates. 
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THEOREM 4.2: Every cotangent bundle is a symplectic manifold with the canonical symplectic 

form. Using the coordinate chart, 𝑇∗𝑈 → ℝ2𝑛: (𝑥, 𝜁) ↦ (𝑥1, … , 𝑥𝑛, 𝜁1, … , 𝜁𝑛) define the tautological 

1-form 𝛼 on 𝑇∗𝑈 by 

𝛼 =∑𝜁𝑖 ⅆ𝑥𝑖

𝑛

𝑖=1

 

Further, define the canonical 2-form as,  

𝜔 = −ⅆ𝛼 =∑ⅆ𝑥𝑖

𝑛

𝑖=1

∧ ⅆ𝜁𝑖 ... 4-1 

PROOF: The existence of such coordinates are guaranteed since Cotangent Bundle is a manifold. In 

coordinates, it is intuitively evident that the basic vectors are very similar to the Darboux Coordinates.  

Now, the choice of coordinates are independent since any choice would look similar to the formal 

coordinate chart and so the various forms should follow. 

REMARKS – 

- Since 𝛼 is coordinate independent, 𝜔 too is! 

- ⅆ𝜔 = −ⅆ2𝛼 = 0, i.e., closed hence a symplectic form. 

- Note that the underlying Symplectic form need not be unique. 

4.3.  PROPERTY OF TAUTOLOGICAL 1-FORM 

THEOREM 4.3: For the tautological 1-form on 𝑇∗𝑋 and a section 𝑠𝜇: 𝑋 → 𝑇
∗𝑋: 𝑥 ↦ (𝑥, 𝜇𝑥). We 

have,  

𝑠𝜇
∗𝛼 = 𝜇 ... 4-2 

PROOF: Let 𝑉 ∈ 𝑇𝑥X be arbitrary, then (write 𝜇x ∈ 𝑇𝑥
∗X)  

(𝑠𝜇
∗𝛼)

𝑥
(𝑉) = 𝛼(𝑥,𝜇𝑥)(s𝜇∗𝑉) = 𝜋(𝑥,𝜇𝑥)

∗ 𝜇x(s𝜇∗𝑉) 

= μx(π(x,μx)∗sμ∗V) = μx((π ∘ sμ)∗V) = 𝜇x(V) 

5.  Complex Vector Space 

MOTIVATION: It turns out that a symplectic manifold naturally contains an additional structure of 

almost complex Manifold. We shall capture this property briefly below. 

DEFINITION 5.1: A complex structure on a vector space, V is a linear map 𝐽: 𝑉 → 𝑉 such that 𝐽2 =

−𝐼 and (𝑉, 𝐽) is a complex vector space. 

Recollect the Matrix notation of Symplectic form from Equation 3-1. 

𝜔(𝑣,𝜔) = −𝑣𝑇𝐽𝑤     where     𝐽 = (
0 −I
I 0

) 

It may be verified that 𝐽2 = −𝐼. 

DEFINITION 5.2: For a symplectic vector space (𝑉, 𝛺), a complex structure 𝐽 on 𝑉 is compactible 

(𝛺-compactible) if, 

𝐺𝐽(𝑢, 𝑣) ≔ 𝛺(𝑢, 𝐽𝑣)  ∀𝑢, 𝑣 ∈ 𝑉 is a positive inner product on 𝑉 

Further, if 𝐽 is a symplectic transformation i.e., 𝛺(𝐽𝑢, 𝐽𝑣) = 𝛺(𝑢, 𝜈) is called a Kählerian vector space. 

THEOREM 5.1: For a symplectic vector space (𝑉, Ω), there exist a compatible complex structure 

𝐽 on 𝑉. 

5.1.  ALMOST COMPLEX STRUCTURE 

DEFINITION 5.3: An almost complex structure on a manifold M is a smooth field of complex 

structures on TM, 

𝑋 ∈ 𝑀 ↦ 𝐽𝑥: 𝑇𝑋𝑀 → 𝑇𝑋𝑀   linear  &    𝐽2 = −𝐼 
(𝑀, 𝐽) is an almost complex manifold. 

𝑇∗𝑋
  𝜋  
→ 𝑋 

𝑇𝑇∗𝑋
  𝜋∗  
ር ሲ 𝑇𝑋 

𝑇∗𝑇∗𝑋
  𝜋∗ 
ርሲ 𝑇∗𝑋 
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DEFINITION 5.4: Let (𝑀,𝜔) be a symplectic manifold. An almost complex structure 𝐽 on 𝑀 is 

called compatible (with 𝜔 or 𝜔-compatible) if the assignment, 

𝑥 ↦ 𝑔𝑥: 𝑇𝑥𝑀 × 𝑇𝑥𝑀 → ℝ ;    𝑔𝑥(𝑢, 𝜈) ≔ 𝜔𝑥(𝑢, 𝐽𝑥𝑣)  

is a Riemannian metric on 𝑀. 

THEOREM 5.2: Let (𝑀,𝜔) be a symplectic manifold, and 𝑔 a Riemannian metric on M. Then 

there exists a canonical almost complex structure J on M which is compatible. 

REMARKS – 

- An almost complex manifold is NOT the same as a Complex Manifold, complex manifold has a 

global property of Complex Integrability on the manifold (readers familiar with Complex Analysis 

may recollect that complex integration has to do with the Holomorphicity of the map). 

6.  Lagrangian Submanifolds 

MOTIVATION: A very important subspace of symplectic manifolds is the submanifold where the 

symplectic form vanishes. Under quantization of a symplectic manifold, they correspond to quantum 

states and as a result display many distinctly quantum properties. Hence these provide a link between 

Classical and quantum world. Among other applications include their vigorous use in optimization 

problems. 

Let (𝑀,𝜔) be a 2n-dimensional symplectic manifold.  

DEFINITION 6.1: For the inclusion map, 𝑖: 𝐿 ↪ 𝑀, L is Lagrangian Submanifold if and only if 

𝑖∗𝜔 = 0 and dim𝐿 = 1/2 dim𝑀. 

Equivalently,  

A submanifold 𝐿 of 𝑀 is a Lagrangian Submanifold if, at each 𝑝 ∈ 𝐿, 𝑇𝑝𝐿 is a 

Lagrangian subspace of 𝑇𝑝𝑀, i.e., 𝜔𝑝|𝑇𝑝𝐿
= 0 and dim𝑇𝑝𝐿 = 1/2 dim𝑇𝑝𝑀 (maximally coisotropic).  

REMARKS 

- Since Lagrangian submanifold is essentially an embedded submanifold
3

, in 𝑅2𝑛 with Darboux’s 

coordinates (𝑞1, … , 𝑞𝑛, 𝑝1, … , 𝑝𝑛), as seen later, the spaces ℝ𝑛 × {𝑝} and {𝑞} × ℝ𝑛 (𝑝, 𝑞 are fixed 

respectively) are all Lagrangian. In quantum mechanics, you can think of these as the eigenstates of 

the position and momentum operators. 

- Lagrangian has nothing to do with the Lagrangian function of Classical Mechanics, but rather with 

the fact that ω was originally called the Lagrange bracket, and historically the space where the bracket 

vanished came to be subsequently called Lagrange Subspaces. 

6.1.  LAGRANGIAN SUBSPACE ON COTANGENT BUNDLES 

- For any smooth manifold 𝑄, the cotangent fibres 𝑇𝑞
∗𝑄 ⊆ 𝑇∗𝑄 are Lagrangian submanifolds of the 

cotangent bundle with the canonical symplectic form. 

THEOREM 6.1: The graph of α is a Lagrangian submanifold of 𝑇∗𝑄 with the standard symplectic 

structure exactly when ⅆ𝛼 = 0. Moreover, the graph is an exact Lagrangian precisely when 𝛼 = ⅆ𝑓 

for 𝑓: 𝑄 → ℝ a smooth function, where 𝑓 is called the generating function. In particular, when 𝛼 = 0 

we call this Lagrangian the zero section. 

PROOF: Using Theorem 4.2 and noting that: 

𝑠𝛼
∗𝜔 = −ⅆ𝑠𝛼

∗𝜆 = −ⅆ𝛼 = 0  in which case  𝛼 ≔ ⅆ𝑓 for some 𝑓: 𝑄 → ℝ 

 

ILLSUTRATION: To get an intuitive idea, we move to the local coordinates:  

Using the coordinate chart, 𝑇∗𝑈 → ℝ2𝑛: (𝑥, 𝜁) ↦ (𝑥1, … , 𝑥𝑛, 𝜁1, … , 𝜁𝑛) for 𝑈 ⊆ 𝑋we have the canonical 

2-form,  

 
3

 An (embedded) submanifold 𝐿 of smooth manifold 𝑋 is a subset 𝐿 ⊆ 𝑋 such that around every point 𝑝 ∈ 𝐿 there exists 

some smooth chart (𝑈, 𝜙) in which 𝐿 ∩ 𝑈 is given by the hyperplane 𝑥1 = 𝑥2 = ⋯ = 𝑥𝑛 = 0 inside ℝ𝑛. 
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𝜔 = −ⅆ𝛼 =∑ⅆ𝑥𝑖

𝑛

𝑖=1

∧ ⅆ𝜁𝑖  

The zero section of 𝑇∗𝑋 is, 

𝑋0 ≔ {(𝑥, 𝜁) ∈ 𝑇∗𝑋|𝜁 = 0  in  𝑇∗𝑋} 

𝛼 = ∑ 𝜁𝑖 ⅆ𝑥𝑖
𝑛
𝑖=1  vanishes on 𝑋0 ∩ 𝑇

∗𝑈 since 𝑖∗𝛼 = 0 for the inclusion 𝑖: 𝑋0 ↪ 𝑇
∗𝑋, and so does 𝜔. 

Hence, the zero section is a Lagrangian submanifold. 

REMARKS –  

- There is a one-to-one correspondence between the set of Lagrangian submanifolds of 𝑇∗𝑋 and the 

set of closed 1-forms on 𝑋. 

6.2.  LAGRANGIAN SUBSPACE AND SYMPLECTOMORPHISM 

MOTIVATION:  Theorem 7.1 has a very important consequence as seen below.  

Let (𝑋1, 𝜔1) and (𝑋2, 𝜔2) be two 2n-dimensional symplectic manifolds with a diffeomorphism 

𝜑:𝑋1 →̃ 𝑋2. Define the twisted product space (𝑋1 × 𝑋2̅̅ ̅, �̃�), such that 

�̃� ≔ 𝜋1
∗𝜔1 − 𝜋2

∗𝜔2  and  𝑋1 × 𝑋2̅̅ ̅ ∈ Γ𝜑 ≔ Graph 𝜑 = {(𝑝, 𝜑(𝑝))|𝑝 ∈ 𝑋1} 

THEOREM 6.2: A diffeomorphism 𝜑 is a symplectomorphism if and only if the graph, Γ𝜑 of the 

diffeomorphism 𝜑:𝑋1 → 𝑋2 is a Lagrangian Submanifold 
4

 of (𝑋1 × 𝑋2̅̅ ̅, �̃�). 

PROOF: If Γ𝜑: 𝑋1 → 𝑋1 × 𝑋2 represents the graph of 𝜑, then, 

Γ𝜑
∗((𝜔1, −𝜔2)) = 𝜔1 − 𝜑

∗𝜔2 

and this is zero if and only if 𝜑 is a symplectomorphism. 

 

 

 

 

 

 
4

 A subspace that is also a manifold in its own rights. 
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Classical Mechanics 

“If I have seen further than others, it is by 

standing upon the shoulders of giants.” 

Sir Isaac Newton 

As was mentioned earlier, Symplectic Manifold is the space of Hamiltonian Mechanics. We shall now 

see how Hamiltonian Dynamics arises naturally out of Symplectic Differentiable Manifolds. 

7.  Hamiltonian vector spaces 

Let 𝑀 be a differentiable manifold, and 𝜌:𝑀 × ℝ → 𝑀 a map, where we set 𝜌𝑡(𝑝) ≔ 𝜌(𝑝, 𝑡). 

THEOREM 7.1: (Picard) In the neighborhood of any point 𝑝 and for sufficiently small time 𝑡, 

there is a one-parameter family of local diffeomorphisms 𝜌𝑡 called isotopy satisfying,  

𝜕𝜌𝑡
ⅆ𝑡
= 𝑣𝑡 ∘ 𝜌𝑡  and    𝜌0 = 𝑖ⅆ𝑀 

- One parameter family of diffeomorphism: 𝜎(𝑡, 𝜎(𝑠 + 𝑥))1 = 𝜎(𝑡 + 𝑠, 𝑥) 

DEFINITION 7.2: When 𝑣𝑡 = 𝑣 is independent of 𝑡, the associated isotopy is called the exponential 

map or the flow and denoted exp 𝑡𝑣. 

Let (𝑀,𝜔) be a symplectic manifold and let 𝐻:𝑀 → 𝑅 be a smooth function. Its differential ⅆ𝐻 is a 1-

form. By nondegeneracy, there is a unique vector field 𝑋𝐻 on 𝑀 such that 𝚤𝑋𝐻𝜔 = ⅆ𝐻. 

DEFINITION 7.3: A vector field 𝑋𝐻, that satisfies 𝚤𝑋𝐻𝜔 = ⅆ𝐻 (where 𝚤𝑋𝐻 is inner product, i.e., 

𝚤𝑋𝐻𝜔 ≡ 𝜔(𝑋𝐻, _)) is called the Hamiltonian Vector Field corresponding to the integral curve 𝐻 called 

Hamiltonian Function. 

- 𝑋 is Hamiltonian ⇔ 𝚤𝑋𝜔 is exact i.e., ⅆ(𝚤𝑋𝜔) = ⅆ
2𝐻 = 0, from Eqn. 1-3 

REMARK on Sign Conventions – 

- Many authors disagree on this sign convention and instead write 𝚤𝑋𝐻𝜔 = −ⅆ𝐻. For our sign 

convention we shall be following (McDuff & Salamon, 2017). 

Consider Euclidean space ℝ2𝑛 with coordinates (𝑞1, … , 𝑞𝑛, 𝑝1, … , 𝑝𝑛) and 𝜔0 = Σⅆ𝑞𝑗 ∧ ⅆ𝑝𝑗. The 

curve 𝜌𝑡 = (𝑞(𝑡), 𝑝(𝑡)) is an integral curve for 𝑋𝐻 exactly if 

ⅆ𝑞𝑖
ⅆ𝑡
(𝑡) =

∂𝐻

∂𝑝𝑖
 ;
ⅆ𝑝𝑖
ⅆ𝑡
(𝑡) = −

∂𝐻

∂𝑞𝑖
 ... 7-1 

Indeed for,   𝑋𝐻 =∑  

𝑛

𝑖=1

(
∂𝐻

∂𝑝𝑖

∂

∂𝑞𝑖
−
∂𝐻

∂𝑞𝑖

∂

∂𝑝𝑖
)    we have, 

𝚤𝑋𝐻𝜔 =∑  

𝑛

𝑗=1

𝚤𝑋𝐻(ⅆ𝑞𝑗 ∧ ⅆ𝑝𝑗) =∑  

𝑛

𝑗=1

[(𝚤𝑋𝐻ⅆ𝑞𝑗) ∧ ⅆ𝑝𝑗 − ⅆ𝑞𝑗 ∧ (𝚤𝑋𝐻ⅆ𝑝𝑗)]

=∑  

𝑛

𝑗=1

(
∂𝐻

∂𝑝𝑗
ⅆ𝑝𝑗 +

∂𝐻

∂𝑞𝑗
ⅆ𝑞𝑗) = ⅆ𝐻 

A Hamiltonian system is a triple (𝑀,𝜔,𝐻), where (𝑀,𝜔) is a symplectic manifold and 𝐻 ∈ 𝐶∞(𝑀,ℝ) 

is a function, called the Hamiltonian Function. 

DEFINITION 7.4: Suppose 𝑄 is an n-dimensional smooth manifold; let 𝑥 = 𝑇∗𝑄 be the cotangent 

bundle and 𝜋: 𝑇∗𝑄 → 𝑄 be the projection. We define the tautological 1-form λ on X to be: 

𝜆(𝑞,𝛼)(𝑣) = 𝛼 (𝐷(𝑞,𝛼)𝜋(𝑣))   where  (𝑞, 𝛼) ∈ 𝑄 × 𝑇∗𝑄  and  𝑣 ∈ 𝑇(𝑞,𝛼)𝑋 

DEFINITION 7.5: On a cotangent bundle 𝑋 = 𝑇∗𝑄 the canonical 2-form 𝜔 is defined to be −ⅆ𝜆. 
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DEFINITION 7.6: In general, we say a symplectic manifold is exact (ⅆ𝜔 = 0) if the symplectic form 

𝜔 is the exterior derivative of some 1-form 𝜆, called the Liouville form.  

- For our purpose this is essentially true for Tautological 1-form (Definition 8.4). 

ILLUSTRATION - We shall now illustrate the above definitions in a local chart: 

Let 𝑄 = ℝ𝑛 with coordinates (𝑞1, … , 𝑞𝑛) and 𝑇∗𝑄 ≅ ℝ2𝑛 with (𝑞1, … , 𝑞𝑛, 𝑝1, … , 𝑝𝑛), while the 

projection map is 𝜋: 𝑇∗𝑄 → 𝑄: (𝑞1, … , 𝑞𝑛, 𝑝1, … , 𝑝𝑛) ↦ (𝑞1, … , 𝑞𝑛). Then, by definition, we have 

𝐷𝜋: ℝ
2𝑛 → ℝ𝑛 given simply by projection to the first n coordinates, so that 

𝜆(𝑞,𝑝)(𝑣1, … , 𝑣𝑛, 𝑣𝑛+1, … , 𝑣2𝑛) =∑  

𝑛

𝑖=1

𝑝𝑖𝑣𝑖    where     𝜆 =∑  

𝑛

𝑖=1

𝑝𝑖d𝑞𝑖 

Further, the canonical 2-form would be, 

𝜔 ≔ −d𝜆 = −∑  

𝑛

𝑖=1

∑ 

𝑛

𝑗=1

∂𝑝𝑖
∂𝑝𝑗

d𝑝𝑗 ∧ d𝑞𝑖 =∑  

𝑛

𝑖=1

d𝑞𝑖 ∧ d𝑝𝑖 

- We call this the canonical symplectic form on ℝ2𝑛. The reason is apparent from Darboux’s theorem. 

It may be easily verified that ⅆ𝜔 = 0. 

Having fixed the basis say {𝑒𝑖} ≡ (𝑞1, … , 𝑞𝑛, 𝑝1, … , 𝑝𝑛), this may be rewritten in Matrix notation as 

𝜔(𝑒𝑖, 𝑒𝑗) = ∑  

𝑛

𝑘=1

d𝑞𝑘 ∧ d𝑝𝑘(𝑒𝑖, 𝑒𝑗) = ∑  

𝑛

𝑘=1

det (
𝑞𝑘(𝑒𝑖) 𝑞𝑘(𝑒𝑗)

𝑝𝑘(𝑒𝑖) 𝑝𝑘(𝑒𝑗)
) 

𝐽 = (
0 −I
I 0

)   ⇒      𝜔(𝑣, 𝜔) = −𝑣𝑇𝐽𝑤 

- J is invertible matrix, since we are requiring 𝜔 to be non-degenerate. 

 

Following Theorem 4.1, we may now calculate the Hamiltonian flow associated to a smooth function H 

on the cotangent bundle 𝑇∗𝑄 in the above local coordinates: 

d𝐻(𝑣) = (∇𝐻)𝑇𝑣 = −𝑋𝐻
𝑇𝐽𝑣   ⇒    −𝑋𝐻

𝑇𝐽 = (∇𝐻)𝑇 

Hence taking the transpose we have,  

𝑋𝐻 = −𝐽∇𝐻 

This was precisely the formula we had for the symplectic gradient of the function H! Therefore, the flow 

of the Hamiltonian vector field of H on the cotangent bundle gives exactly the Hamiltonian dynamics 

associated to the function H! 

DEFINITION 7.7: The Poisson bracket of two functions 𝐻, 𝑓: 𝑋 → ℝ on a symplectic manifold is 

another smooth function {𝐻, 𝑓} on 𝑋 defined by − {𝐻, 𝑓} = 𝜔(𝑋𝐻, 𝑋𝑓) 

THEOREM 7.2: We have {𝑓, 𝐻} = 0 if and only if 𝑓 is constant along integral curves of 𝑋𝐻, in 

which case 𝑓 is conserved under the Hamiltonian flow and is called an integral of motion (or a first 

integral or a constant of motion). 

PROOF – Let 𝜌𝑡 be the flow of 𝑋𝐻. Then, 

ⅆ

ⅆ𝑡
(𝑓 ∘ 𝜌𝑡) = 𝜌𝑡

∗ℒ𝑋𝐻𝑓 = 𝜌𝑡
∗𝚤𝑋𝐻ⅆ𝑓 = 𝜌𝑡

∗𝚤𝑋𝐻𝚤𝑋𝑓𝜔

= 𝜌𝑡
∗𝜔(𝑋𝑓 , 𝑋𝐻) = 𝜌𝑡

∗{𝑓, 𝐻}
 

PROPOSITION: Hamiltonian Isotopy is a symplectomorphism, since 

ⅆ

ⅆ𝑡
𝜌𝑡
∗𝜔 = 𝜌𝑡

∗ℒ𝑋𝐻𝜔 = 𝜌𝑡
∗(ⅆ 𝚤𝑋𝐻𝜔⏟

𝑑𝐻

+ 𝚤𝑋𝐻 ⅆ𝜔⏟
0

) = 0. 

- In essence Theorem 7.2, implies that for any smooth function 𝑓: 𝑋 → ℝ, we have 𝑓̇ = {𝑓, 𝐻} along 

the trajectories of H. Thus, Poisson brackets control how quantities evolve under Hamiltonian 

dynamics. 
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7.1.  LIE ALGEBRA IN SYMPLECTIC MANIFOLD 

PROPOSITION: The collection of all smooth functions on a symplectic manifold X forms a Lie algebra 

with respect to the Poisson bracket: that is, the Poisson bracket satisfies: 

- (Bilinearity) {𝜆𝑓 + 𝜇𝑔, ℎ} = 𝜆{𝑓, ℎ} + 𝜇{𝑔, ℎ},  for 𝜇, 𝜆 ∈ ℝ 

- (Antisymmetry) {𝑓, 𝑔} = −{𝑔, 𝑓} 

- (Jacobi Identity) {𝑓, {𝑔, ℎ}} + {ℎ, {𝑓, 𝑔}} + {𝑔, {ℎ, 𝑓}} = 0 

REMARKS 

- Poisson bracket behaves a lot like the commutator brackets from quantum mechanics. In fact, the 

analogy runs deeper, 

PROPOSITION: Suppose ℝ2𝑛 has the canonical symplectic form 𝜔 = ∑ ⅆ𝑞𝑖
𝑛
𝑖=1 ∧ ⅆ𝑝𝑖; then the 

Poisson brackets are given by: 

{𝑞𝑖, 𝑝𝑗} = 𝛿𝑖𝑗 

PROOF: In local chart, we have, 

{𝑓, 𝑔} = 𝜔(𝑋𝑓, 𝑋𝑔) = −(𝑋𝑓)
𝑇
𝐽(𝑋𝑔) = −(−𝐽∇𝑓)

𝑇𝐽(−𝐽∇𝑔) = −(∇𝑓)𝑇𝐽𝑇𝐽2(∇𝑔) = −(∇𝑓)𝑇𝐽(∇𝑔) 

Since 𝛻𝑞𝑖 , 𝛻𝑝𝑗 are exactly the standard basis vectors we have that {𝑞𝑖, 𝑝𝑗} are exactly the entries in the 

lower left-hand Id entry of 𝐽, that is, {𝑞𝑖, 𝑝𝑗} = 𝛿𝑖𝑗. 

REMARKS: 

- Even in classical mechanics, position and momentum coordinates don’t commute. (This should not 

be confused with their corresponding flows, which indeed does commute) 

- This analogy motivates the subject of geometric quantization - to find a means of associating to any 

symplectic manifold a Hilbert space with observables obeying the same commutation relations (to 

order ℏ). 

DEFINITION 7.8: Let 𝑋 be a manifold and 𝑉 a vector field on 𝑋; the Lie derivative ℒ𝑉(𝛼) of a 

differential k-form 𝛼 on 𝑋 is defined to be the differential k-form given at a point 𝑥 ∈ 𝑋 by: 

(ℒ𝑉𝛼)𝑥 =
d

d𝑡
|
𝑡=0

(Φ𝑡
∗𝛼)𝑥 

where 𝛷𝑡 is the time-t flow of 𝑉 and the derivative with respect to 𝑡 is taken inside the vector space 

⋀ 𝑇𝑥
∗𝑋𝑘 . Similarly, we can define the Lie bracket of two vector fields 𝑉,𝑊 to be the vector field 

[𝑉,𝑊] given at a point 𝑥 ∈ 𝑋 by: 

[𝑉,𝑊]𝑥 = −(ℒ𝑉𝑊)𝑥 = −
d

d𝑡
|
𝑡=0
(𝐷Φ𝑡(𝑥)Φ𝑡

−1𝑊)
𝑥
 

where the derivative is taken inside the vector space 𝑇𝑥𝑋. 

PROPOSITION: If X is a symplectic manifold, then the symplectic gradient gives a homomorphism of 

Lie algebras from the smooth functions on X to the Lie algebra of vector fields on X: in other words, 

𝑋{𝑓,𝑔} = [𝑋𝑓 , 𝑋𝑔] 

for any two smooth functions 𝑓, 𝑔 on X. 

PROOF: Since differentiation is a linear operation, we have: 𝜔 (ℒ𝑋𝑓𝑋𝑔, __) = ℒ𝑋𝑓 (𝜔(𝑋𝑔, __)) where 

𝜔(𝑋𝑔, __) is a 1-fom. Then it follows that: 

ℒ𝑋𝑓 (𝜔(𝑋𝑔, __)) = ℒ𝑋𝑓(d𝑔) = d (ℒ𝑋𝑓𝑔)   ⇒   d (ℒ𝑋𝑓𝑔) = d (d𝑔(𝑋𝑓)) = d{𝑓, 𝑔} 

where we have exchanged the derivatives. But this exactly means, 𝑋{𝑓,𝑔} = [𝑋𝑓 , 𝑋𝑔]. 

REMARK: 

- Had we chosen opposite signs in either Hamilton’s equation or the definition of the Lie bracket, this 

would have been a Lie algebra anti-homomorphism. 

THEOREM 7.3: Suppose (𝑋, 𝜔) is a symplectic manifold: then a diffeomorphism 𝐹: 𝑋 → 𝑋 is a 

symplectomorphism if and only if 𝐹 preserves Poisson brackets, in the sense that {𝑓, 𝑔} ∘ 𝐹 =

{𝑓 ∘ 𝐹, 𝑔 ∘ 𝐹}. 
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DEFINITION 7.9: For a differentiable manifold M, the infinitesimal action 𝜙: 𝔤 → Vect(𝑀) is a 

homomorphism of Lie algebras: we call this an infinitesimal symmetry of M. 

7.2.  LIOUVILLE’S THEOREM 

THEOREM 7.4: The flow of every Hamiltonian gives a symplectomorphism. 

PROOF: Let 𝛷𝑡: 𝑋 → 𝑋 be the diffeomorphism of 𝑋 given by the time-t flow of the vector field 𝑋𝐻 of 

the Hamiltonian 𝐻:𝑋 → ℝ. We are to show,  

d

d𝑡
|
𝑡=0
Φ𝑡
∗𝜔 = 0   i.e.,    ℒ𝑋𝐻𝜔 = 0 

Using Cartan’s Magic Formula, 

ℒ𝑋𝐻𝜔 = d(𝜄𝑋𝐻𝜔) + 𝜄𝑋𝐻d𝜔 

But, d(𝜄𝑋𝐻𝜔) = ⅆ(ⅆ𝐻) = 0, Property of Hamiltonian field, and d𝜔 = 0 as we have required 𝜔 to 

be closed. 

- From a different point of view, this is perhaps a belated justification of why we wanted 𝜔 to be closed. 

THEOREM 7.5: (Liouville’s theorem) The flow of a Hamiltonian vector field preserves volumes 

of subsets of X. 

- Since we already have a 2-form defined, taking n wedge products of that will give the volume form 

on a 2n-dimensional symplectic manifold. 

PROOF:  Given a volume form at some point, the volume form at some other point along the 

Hamiltonian flow may be found using the invariance of pullback along the flow lines-  

∫  
Φ𝑡(𝑈)

𝜔∧𝑛 = ∫  
𝑈

Φ𝑡
∗(𝜔∧𝑛) 

Then we take the derivative and use the linearity of the integral: 

d

d𝑡
|
𝑡=0
∫  
𝑈

Φ𝑡
∗(𝜔∧𝑛) = ∫  

𝑈

ℒ𝑋𝐻𝜔
∧𝑛 = 0   since   ℒ𝑋𝐻𝜔

∧𝑛 = 0 from Theorem 8.4 

- In fact, all symplectomorphism preserve volume since by definition, a symplectomorphism doesn’t 

change the forms (invariant under transformations). 

7.3.  LAGRANGIAN SUBMANIFOLD AND LAW OF LEAST ACTION 

MOTIVATION: We had promised that the reader than Lagrangian submanifold is in many ways more 

important than the symplectic manifold itself and we shall see this now. 

Given a symplectic manifold X with an exact symplectic form ω = dα for some 1-form α, along with a 

Hamiltonian H, we can define the symplectic action or Hamiltonian action of a path 𝜔2𝛾: [0,1] → 𝑋: 

𝑆(𝛾) = ∫  
1

0

𝛼(�̇�)d𝑡 − ∫  
1

0

𝐻(𝛾(𝑡))d𝑡 

To completely determine this system, we specify the following boundary conditions: two submanifolds 

𝐿1, 𝐿2 of 𝑋 so that we require 𝛾(0) ∈ 𝐿0 and 𝛾(1) ∈ 𝐿1. Examples might include 𝐿0 = 𝑇𝑞0
∗ 𝑄, 𝐿1 = 𝑇𝑞1

∗ 𝑄 

for the usual Dirichlet boundary conditions, or 𝐿0, 𝐿1 are the zero-section for von Neumann boundary 

conditions. 

For the one parameter family of curves, 𝛾𝑠: [0,1] → 𝑋 with 𝑠 ∈ ℝ and 𝛾0 = 𝛾. If 𝛾 is a critical value of 

the symplectic action, we demand, 

d

d𝑠
|
𝑠=0
𝑆(𝛾𝑠) = 0 
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Now,  

d

d𝑠
|
𝑠=0
𝑆(𝛾𝑠) = ∫  

1

0

d

d𝑠
|
𝑠=0

𝛼(�̇�𝑠)d𝑡 − ∫  
1

0

d

d𝑠
|
𝑠=0

𝐻(𝛾𝑠(𝑡))d𝑡

= ∫  
1

0

𝛼 (
d

d𝑠
|
𝑠=0
�̇�𝑠) d𝑡 − ∫  

1

0

d𝐻(𝑉(𝑡))d𝑡 = 0 

We may change the order of 𝑠 and 𝑡 derivative to get, 

∫  
1

0

𝛼𝛾(𝑡) (
d

d𝑡
𝑉(𝑡)) d𝑡 − ∫  

1

0

d𝐻(𝑉(𝑡))d𝑡

= ∫  
1

0

d

d𝑡
(𝛼𝛾(𝑡)(𝑉(𝑡))) d𝑡 + 𝜔(�̇�, 𝑉(𝑡))d𝑡 − ∫  

1

0

d𝐻(𝑉(𝑡))d𝑡 = 0 

And integrating by parts gives, 

𝛼(𝑉(1)) − 𝛼(𝑉(0)) − ∫  
1

0

[𝜔(�̇�, 𝑉(𝑡)) − d𝐻(𝑉(𝑡))]d𝑡 = 0 

- Assuming the first two terms are zero (justification below), the integral has to be essentially zero which 

implies 𝜔(�̇�, _) = ⅆ𝐻. In other words, minima of the action must necessarily occur when 𝛾 is a flow 

of the Hamiltonian vector field 𝑋𝐻. 

- We require 𝛼(𝑉(1)) − 𝛼(𝑉(0)) = 0 where 𝑉(0) ∈ 𝑇𝛾(0)𝐿0 and 𝑉(1) ∈ 𝑇𝛾(1)𝐿1. The only way this 

is possible for every such 𝛾𝑠 is if 𝛼 is zero on the tangent spaces to 𝐿1 and 𝐿0, which essentially means 

𝜔|𝐿0 = 𝜔|𝐿1 = 0. Since we want our spaces of possible boundary conditions to be maximal, this 

means we should have 𝐿1, 𝐿0 be Lagrangian submanifolds of 𝑋. 

REMARKS: 

- To conclude, Lagrangian are the natural place to put boundary conditions. Moreover, solutions to 

equations in physics are given by intersections of Lagrangian submanifolds, for example under 

quantization, this Lagrangian intersection corresponds to taking the correlator ⟨𝐿0|𝑒
𝑡𝐻|𝐿1⟩. 

where V (t) is the vector field 

along γ(t) given by: 

𝑉(𝑡) =
d

d𝑠
|
𝑠=0
𝛾𝑠(𝑡) 
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Introduction to Geometric Quantization 

“When you change the way you look at 

things, the things you look at change.”  

Max Plank 

8.  Introduction 

The development of various formulations for Optics and the associated Wave-Corpuscular conflicts 

have been enthusiastically portraited throughout the history of Theoretical Physics. The very heart of 

Quantum Mechanics and de-Broglie Wave Particle Duality was heavily inspired by their analogues in 

Optical Mechanics formulations. Every once in a while, when you doubt Quantum Theories its worth 

falling back to the good old Optics. The Modern formulation of Optics is the closest classical ancestor 

that draws an indistinguishable likeness between Particle and Wave. 

The main purpose of this chapter is to discuss the relation between linear optics, geometric optics, and 

wave optics, stressing Hamilton's point of view and the corresponding relations between classical and 

quantum mechanics. We shall use the different formulation of Optics to draw some striking conclusions. 

This section will rarely use the actual machinery of Symplectic Geometry, hence making it accessible to 

Physics enthusiasts as well.  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Concise Schematic of Hierarchy in Theory of Optics. Extracted from 

(Guillemin & Sternberg, 1990). 
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9.  Some Formulations of Classical Optics 

9.1.  GAUSSIAN OPTICS 

In Gaussian optics we are interested in tracing the trajectory of a light ray as it passes through the various 

refracting surfaces of the optical system (or is reflected by reflecting surfaces). By rotational symmetry, it 

is clearly sufficient to restrict attention to rays lying in one fixed plane and hence we study the rays which 

are coplanar (since due to rotational symmetry, we can always choose a plane to make rays coplanar). 

For reasons that will become apparent soon, the coordinates for denoting 

a light ray are 𝒒𝒊 perpendicular to z-axis and 𝒑𝒊 = 𝒏𝐬𝐢𝐧 𝜽𝒊 ≈ 𝑛𝜃𝑖 where 

𝜃𝑖 is the angle between ray and the z-axis (Anticlockwise direction is 

positive by convention). 

MOTIVATION: The problem is to relate the ray emerging from the 

system (can be some combination of Mirrors and Lenses) to the ray 

that was incident. Basically, to determine (
𝑞2
𝑝2
) as a function of (

𝑞1
𝑝1
). 

Ignoring all terms quadratic or higher (linear Approx.), we may write, 

(
𝑞2
𝑝2
) = 𝑀21 (

𝑞1
𝑝1
) 

REMARKS –  

- It is worth taking note of the properties of 𝑀21, namely, orientability (det𝑀21 = 1) and area 

preserving (the physical system merrily changes the direction of the incident under Linear Optics 

Approx.). Careful readers may have already noticed the similarity of this Determinant and the 

Symplectic Form. 

ILLUSTRATION –  

As an illustration of the procedure, let us take the opportunity to define focal Planes: 

Take reference plane 𝑧1 to lie a distance 𝑠1 to the left of a thin lens, while 𝑧2 lies a distance 𝑠2 to the 

right of the lens. Between these planes, the matrix is,  

(
1 𝑠2
0 1

) (
1 0

−1/𝑓 1
) (
1 𝑠1
0 1

) = (
1 − 𝑠2/𝑓 𝑠2 + 𝑠1 − 𝑠1𝑠2/𝑓
−1/𝑓 1 − 𝑠1/𝑓

) 

where 𝑠1 and 𝑠2 are positive in the direction of light ray. 

i. When 𝑠1 = 𝑠2 = 𝑓, i.e., when the reference planes are focal planes of the system: 

⇒    (
1 𝑓
0 1

) (
1 0

−1/𝑓 1
) (
1 𝑓
0 1

) = (
0 𝑓

−1/𝑓 0
)    i.e. to say   (

𝑞2
𝑝2
) = (

0 𝑓
−1/𝑓 0

) (
0
𝑝1
) 

If a ray, incident on the lens, passes through this plane at 𝑞1 = 0 with slope 𝑝1, the outgoing ray 

has zero slope and so is parallel to the axis, as expected. 

ii. The planes are conjugate if the upper-right entry of this matrix is 0 (i.e., if 𝑠2 + 𝑠1 − 𝑠1𝑠2/𝑓 =

0). Thus, we obtain, 1/𝑠1 + 1/𝑠2 = 1/𝑓, the well-known thin-lens equation. 

THEOREM 9.2: Any 2 × 2 matrix with determinant 1 can arise as the matrix of some optical 

system. i.e., there is an isomorphism between 𝑆𝑙(2, ℝ) and Gaussian optics. 

PROOF: The proof involves two parts – the mathematical part which is essentially decomposing any 

such matrix into product of matrices, and the second part is mapping each of these components to 

the physical system. 

Since 𝑀 is not singular, at most both element corresponding to any diagonal can be simultaneously 

zero. 

CASE I – If 𝐶 ≠ 0, then for any 2 × 2 matrix, 

             (
𝐴 𝐵
𝐶 𝐷

) = (
1 −𝑠
0 1

) (
1 0
𝐶 1

) (
1 −𝑡
0 1

)      where     {
𝐴 + 𝑠𝐶 = 1
𝑡 = −(𝐵 + 𝑠𝐷)

 

 

 

Translation Operator: Ray continues to 

travel in a straight line between two reference 

planes (𝑧1 and 𝑧2 separated by −𝑡/𝑛) lying 

in the same medium of refractive index 𝑛. 

Refraction Operator: Corresponds to 

Bending of the incident light ray due to a 

refracting surface of power, 𝐶 = (𝑛2 − 𝑛1)𝑘. 

Schematic representation of 

choice of Coordinates 
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The steps that lead to this decomposition is LU decomposition followed by some algebraic 

manipulations which we haven’t shown here. 

Hence this decomposition does correspond to Physical system that consists of a translation of −𝑡/𝑛1 

followed by a refraction with associated power of (𝑛2 − 𝑛1)𝑘 followed by another translation of  

−𝑠/𝑛1
′ . 

CASE II - If 𝐶 = 0,  

⇒  (
𝐴 𝐵
0 𝐷

) ≡ (
1 0

−1/𝑓2 1
) (
1 𝑓1 + 𝑓2
0 1

) (
1 0

−1/𝑓1 1
) =

(

 
 
1 −

𝑓1 + 𝑓2
𝑓1

𝑓1 + 𝑓2

0 1 −
𝑓1 + 𝑓2
𝑓2 )

 
 
  

Note that this is the only possible matrix where 𝐶 = 0, 

since there is an added constraint of det𝑀21 = 0. 

 

REMARK –  

- More generally, it is not 𝑆𝑙(2, ℝ) that is related to 

gaussian optics, but 𝑆𝑝(2,ℝ). For 𝑛 = 2 case it so happens that 𝑆𝑙(2, ℝ) = 𝑆𝑝(2,ℝ), where 𝑆𝑝 is 

the symplectic transformations. This is the primary reason why we had emphasised the Orientability 

and Area Preserving character of these Operators earlier. 

9.2.  LINEAR OPTICS 

Linear Optics does NOT assume rotation symmetry, 

but demands that all angles involved be small. Hence, 

its also called Paraxial Approximation. 

To specify four coordinates for a ray in 3D: -  

𝑞𝑥, 𝑞𝑦 ; 𝜃𝑥 , 𝜃𝑦 

where 𝑞𝑖, 𝑝𝑖 takes the same form as in previous case. 

And so, for a reference plane 𝑧1, the ray will 

correspond to vector,  

𝑢1 = (

𝑞𝑥1
𝑞𝑦1
𝑝𝑥1
𝑝𝑦1

) ≡ (
�̅�1
�̅�1
) 

which is same as the gaussian approximation except 

now, �̅�, �̅� are 2 component vectors. 

MOTIVATION: As before the natural question to ask is the relation between incident and emergent 

rays and what kind of 4 x 4 matrices can actually arise in linear optics? 

REMARKS –  

- Like the previous case, we expect these operators also to have orientability and Area Preserving 

characters. Further, from the representation of rays as a 4-component vector, we could draw the 

analogy that these operators should belong to 𝑆𝑝(4,ℝ). 

THEOREM 9.3: Linear optics is isomorphic to the study of the group 𝑆𝑝(4,ℝ). 

PROOF: As before, the proof involves two parts – the mathematical part which is essentially 

decomposing any such matrix into product of matrices, and the second part is mapping each of these 

components to the physical system. Here, we shall merely jot down the key ideas without getting 

involved in a vigorous proof. 

i. Physical part – refraction at surface represented by (
𝐼 0
−𝑃 𝐼

) where 𝑃 = 𝑃𝑡 and 

– motion in a medium of constant index of refraction by (
𝐼 ⅆ𝐼
0 𝐼

) where d is the optical    

Astronomical Telescope: This is the case an 

astronomical telescope which consists of an 

objective lens of large positive focal length 

𝑓1 and an eyepiece of small positive focal 

length 𝑓2 separated by a distance 𝑓1 + 𝑓2. 

Schematic representation of choice of Coordinates 
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   distance along the axis 

ii. Mathematical part – every symplectic matrix can be written as a product of matrices of the 

above types. 

REMARK – 

- It is worth pointing out that Gaussian Optics is a special case of Linear Optics when the System has 

rotational symmetry, i.e., to say 𝑆𝑝(2,ℝ) ↪ 𝑆𝑝(4, ℝ).  

- Alternatively, it turns out that a matrix 𝑀 can arise as the transformation matrix of a linear optical 

system if and only if,  𝜔(𝑀𝑢,𝑀𝑢′) = 𝜔(𝑢, 𝑢′), i.e., 𝑀 is a Symplectic Transformation and we shall 

formalize this more precisely (Theorem 10.3). 

9.3.  NOTE ON GEOMETRIC OPTICS 

Geometric Optics formalism is very similar to the case of Linear optics, except for the fact that an 

additional analysis of aberrations is also considered. Since we are more interested in the Symplectic 

Techniques involved, we shall skip ahead to the next relevant topic. 

10.  Hamilton Formalism 

MOTIVATION: We shall now focus on highlighting the Symplectic Picture through Fermat’s Principle. 

Further, we shall be following Hamilton’s Formalism because of its elegance and close association 

with Hamiltonian Mechanics. 

HISTORIC NOTE: (Hamilton, 1828) This theory was published by Hamilton at the age of only 23 and 

was in fact was the guiding light for the Classical Hamiltonian Mechanics. Interested readers may 

find the paper here. 

For the system, 

(
�̅�2
�̅�2
) = (

𝐴 𝐵
𝐶 𝐷

) (
�̅�1
�̅�1
)   ⇒    

�̅�1 = (1/𝐵)(�̅�2 − 𝐴�̅�1)

�̅�2 = (1/𝐵)(𝐷�̅�2 − �̅�1)
  for  𝐵 ≠ 0 ... 10-1 

REMARK – 

- When 𝐵 = 0 (Conjugate planes), �̅�1, �̅�2 can’t be uniquely determined by �̅�𝑖 since there are an infinite 

number of light rays joining �̅�1 and �̅�2. Hence the system in indeterminate and we shall exclude the 

case for time being. 

DEFINITION 10.1: The Point characteristic
5

 / Eikonal of the system is defined to be, 

𝑊 = 𝑊(�̅�1, �̅�2) = (
1
2⁄ )(𝐵

−1𝐴 �̅�1 ⋅ �̅�1 + 𝐵
−1𝐷 �̅�2 ⋅ �̅�2 − 2(𝐵

𝑡)−1 �̅�1 ⋅ �̅�2) + 𝐾 where  𝐾 is a const. 

REMARK – 

- Although such a definition may look deceptive, comparing with Eq. 10-1 notice that, 

�̅�1 = −(∂𝑊/ ∂�̅�1) and �̅�2 = ∂𝑊/ ∂�̅�2 

      Curiously enough, this is way too similar to Hamiltonian equations in Classical Mechanics.  

THEOREM 10.1: By an appropriate choice of the constant 𝐾, we can arrange that 𝑊(�̅�1, �̅�2) be the 

"optical length” 
6

 of the light ray joining the path
7

  �̅�1 to �̅�2 and is, 

𝐿(𝛾) ≡ 𝑊(�̅�1, �̅�2) = 𝐿axis +
1
2⁄ (𝑝2𝑞2 − 𝑝1𝑞1) ... 10-2 

     where 𝐿axis denotes the optical length from 𝑧1 to 𝑧2 along the optical axis. 

REMARK: 

- This is essential the same form of Characteristic function we had defined, 

𝐿axis +
1
2⁄ (𝑝2𝑞2 − 𝑝1𝑞1)

Eq 10-1
→    𝐿(𝛾) = 𝐿axis + (

1
2𝐵⁄ )(𝐴𝑞1

2 + 𝐷𝑞2
2 − 2�̅�1�̅�2) 

 
5

 To be precise, there are three characteristic functions depending on whether we want the independent variables to be only 

�̅�’s or only �̅�’s or a mixture of both. 
6

 For a line segment of length 𝑙 in a medium of constant index of refraction n, the optical length is 𝑛𝑙. 
7

 A path 𝛾 is defined as a broken line segment, 𝑙𝑖, where each component segment lies in a medium of constant index of 

refraction, 𝑛𝑖. 

https://www.maths.tcd.ie/pub/HistMath/People/Hamilton/Rays/PtFst.pdf


PAGE 24 

PROOF: Since vectors are involved, a general proof is very involved and the interested reader is hereby 

referred to the original article (Hamilton, 1828). Nevertheless, for our satisfaction we may verify that 

this is indeed true in the limit of Gaussian optics (since no vectors are involved a verification of the 

same is very straight forward). 

VERIFICATION: We shall illustrate the process for one case, 

i. Case when 𝑛 = constant: Hence 𝑝1 = 𝑝2 ≈ 𝑛𝜃. 

Further, the optical length may be calculated using the 

Pythagoras Theorem as,  

𝐿(𝛾) = 𝑛(ⅆ2 + (𝑞2 − 𝑞1)
2)1/2  ≈  𝑛ⅆ +

1

2

𝑛

ⅆ
(𝑞2 − 𝑞1)

2 = 𝑛ⅆ +
1

2
[
𝑛

ⅆ
(𝑞2 − 𝑞1)] (𝑞2 − 𝑞1)

= 𝑛ⅆ +
1

2
𝑝(𝑞2 − 𝑞1)   using Eq. 10-1 

which is the expression 10-2 in Theorem 10.1. 

ii. Similarly, the case two different refractive index on either side may be verified. 

10.1.  FERMAT'S PRINCIPLE 

Let us fix �̅�1 and �̅�2 and consider the set of all paths joining �̅�1 to �̅�2 that consist of two segments - from 

�̅�1 to �̅� and from �̅� to �̅�2.  

THEOREM 10.2: The actual light ray can be characterized as that path for which the optical length 

𝐿 takes on an extreme value, that is, for which  

𝜕𝐿

𝜕�̅�
= 0 

REMARKS -  

- In the case of Gaussian Approximation, we have 

𝐿 = 𝑛1ⅆ1 + 𝑛2ⅆ2 +
1
2⁄ {(𝑛1 ∕ ⅆ1)(𝑞 − 𝑞1)

2 + (𝑛2 ∕ ⅆ2)(𝑞2 − 𝑞)
2 − (𝑛2 − 𝑛1)𝑞

2} 

The extremum is:  

i. minimum if    (𝑛1 ∕ ⅆ1) + (𝑛2 ∕ ⅆ2) − (𝑛2 − 𝑛1) > 0 

If (𝑛2 − 𝑛1) > 0, minimum for small values of ⅆ1 and ⅆ2 while maximum for large values 

of ⅆ1 and ⅆ2 

ii. maximum if    (𝑛1 ∕ ⅆ1) + (𝑛2 ∕ ⅆ2) − (𝑛2 − 𝑛1) < 0 

iii. indeterminant if        (𝑛1 ∕ ⅆ1) + (𝑛2 ∕ ⅆ2) = (𝑛2 − 𝑛1) 

which is the condition that the planes are conjugate 

- The fact that L is minimized only up to the first conjugate point is true in a more general setting and 

is known as the Morse index theorem. (Milnor, 1963) 

10.2.  FERMAT'S PRINCIPLE AND HAMILTON'S PRINCIPLE 

MOTIVATON: We shall now see why we expect the transformation from one set of ray parameters to 

another to be symplectic, a consequence of Fermat's principle. 

 

Given a Characteristic function 𝑳, and a trajectory 𝛾(𝑧) =

(

 
 

𝑥
𝑦
�̇�
�̇�
𝑧)

 
 

, consider, 

∫𝑳(𝑥, 𝑦, �̇�, �̇�, 𝑧)ⅆ𝑧
 

�̂�

= ∫𝑛(𝑥, 𝑦, 𝑧)(1 + �̇�2 + �̇�2)1/2ⅆ𝑧
 

�̂�

 

Also, define the mapping 𝜙:ℝ5 → ℝ5, 

𝑞𝑥 = 𝑥, 𝑞𝑦 = 𝑦, 𝑧 = 𝑧 

𝑝𝑥 =
∂𝑳

∂�̇�
=

𝑛�̇�

(1 + �̇�2 + �̇�2)1/2
, 𝑝𝑦 =

∂𝑳

∂�̇�
=

𝑛�̇�

(1 + �̇�2 + �̇�2)1/2
 

And the Legendre Transform of 𝑳 as the Function, 
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𝐻(𝑞𝑥, 𝑞𝑦, 𝑝𝑥, 𝑝𝑦, 𝑧) = 𝑝𝑥�̇� + 𝑝𝑦�̇� − 𝑳 ... 10-3 

THEOREM 10.3: A curve 𝜈 in ℝ5 given by 𝜈(𝑧) =

(

 
 

𝑞𝑥(𝑧)
𝑞𝑦(𝑧)

𝑝𝑥(𝑧)
𝑝𝑦(𝑧)
𝑧 )

 
 

 will be everywhere tangent to the lines 

defined by 𝑖(𝜂)ⅆ𝜃 = 0, for some vector 𝜂, IFF –  

ⅆ𝑞𝑥
ⅆ𝑧

=
∂𝐻

∂𝑝𝑥
⇒
ⅆ𝑥 ∘ 𝜙−1𝜈

ⅆ𝑧
= �̇�,

ⅆ𝑞𝑦

ⅆ𝑧
=
∂𝐻

∂𝑝𝑦
 ⇒
ⅆ𝑦 ∘ 𝜙−1𝜈

ⅆ𝑧
= �̇�

ⅆ𝑝𝑥
ⅆ𝑧

= −
∂𝐻

∂𝑞𝑥
,

ⅆ𝑝𝑦

ⅆ𝑧
= −

∂𝐻

∂𝑞𝑦

 ... 10-4 

PROOF –  

∫𝑳(𝑥, 𝑦, �̇�, �̇�, 𝑧)ⅆ𝑧 
𝜙
→ ∫𝑳(𝜈(𝑧))ⅆ𝑧 

But from Eq. 10-3, 

𝑳(𝜈(𝑧))ⅆ𝑧 = 𝜙∗{𝑝𝑥�̇� + 𝑝𝑦�̇� − 𝐻(𝑞𝑥, 𝑞𝑦, 𝑝𝑥 , 𝑝𝑦, 𝑧)}ⅆ𝑧 

⇒   𝑳(𝜈(𝑧))ⅆ𝑧 = 𝜙∗(𝑝𝑥ⅆ𝑞𝑥 + 𝑝𝑦ⅆ𝑞𝑦 − 𝐻ⅆ𝑧) 

- Recollect that this is actually the transformation rule for 1-forms, as in 

Equation 1-2. 

Thus, 

∫𝑳ⅆ𝑧 = ∫𝜃
𝜈

    where     𝜃 = 𝑝𝑥ⅆ𝑞𝑥 + 𝑝𝑦ⅆ𝑞𝑦 − 𝐻ⅆ𝑧 

- It therefore defines at each point of ℝ5 a one-dimensional subspace spanned by those vectors 𝜂 of 

rank 1, that satisfy 𝑖(𝜂)ⅆ𝜃 = 0. 

The most general form for 𝑖(𝜂) =  ∂/ ∂𝑧 + 𝐴(∂/ ∂𝑞𝑥) + 𝐵(∂/ ∂𝑞𝑦) + 𝐶(∂/ ∂𝑝𝑥) + 𝐷(∂/ ∂𝑝𝑦) 

Hence,  

𝑖(𝜂)ⅆ𝜃 = 0  

⇒   (𝐶 +
𝜕𝐻

𝜕𝑞𝑥
) ⅆ𝑞𝑥 + (𝐷 +

𝜕𝐻

𝜕𝑞𝑦
)ⅆ𝑞𝑦 − (𝐴 −

𝜕𝐻

𝜕𝑝𝑥
) ⅆ𝑝𝑧 − (𝐵 −

𝜕𝐻

𝜕𝑝𝑦
)ⅆ𝑝𝑦

− (+𝐴
𝜕𝐻

𝜕𝑞𝑥
+ 𝐵

𝜕𝐻

𝜕𝑞𝑦
+ 𝐶

𝜕𝐻

𝜕𝑝𝑥
+ 𝐷

𝜕𝐻

𝜕𝑝𝑦
)ⅆ𝑧 = 0 

Equating the coefficients of which results in the expressions.       

REMARK –  

- This is essentially the Hamilton’s version of Euler-Lagrange equations in Optics. 

- The additional constraint of Eq.10-4 means that the manifold is now 4 dimensional and, 

𝜔 ≔ d𝜃 = ⅆ𝑝𝑥 ∧ ⅆ𝑞𝑥 + ⅆ𝑝𝑦 ∧ ⅆ𝑞𝑦 

- Theorem 10.3 implies a Lagrangian Manifold hence guaranteeing the fact that these transformations 

are indeed symplectomorphism as claimed. 

THEOREM 10.4: (Loomis & Sternberg, 2014) Calculus of Variations: 𝜈(𝑧) is an extremal for 𝑳 if 

and only if 𝜈(𝑧) satisfies 𝑖(𝜂)ⅆ𝜃 = 0, which is the Hamiltonian variation of Euler-Lagrange 

Equations.  

PROOF: This is a very standard theorem, used alike in Variational Calculus as well a Classical 

Mechanics. Proof for the same may be found in any standard texts including (Loomis & Sternberg, 

2014) or (Goldstein, 1980).  

REMARK –  

- Hence, we conclude that the trajectories predicted by Hamiltonian formalism is essentially an 

alternate version of Fermat’s Principle. 

𝛾∗ⅆ𝑞𝑥 = �̇�ⅆ𝑧  
and 𝛾∗ⅆ𝑞𝑦 = �̇�ⅆ𝑧 
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- Theorem 10.3 and 10.4 together forms a more generalized nature of Lagrangian Subspace, which 

captures the wide use of Lagrangian Subspaces in Optimization problems. 

 

11.  Wave Optics 

MOTIVATION: Ray Optics is unable to explain the phenomena of Interference and Diffraction which 

are associated with Waves. For our purpose we shall consider an “intermediate” wave formalism, 

where Interference and Diffraction are taken care of, but we ignore Geometric Aberrations, which 

are associated with non-linearity of the system.  

11.1.  POSTULATES 

Each point of a light ray can be associated with a complex wavefunction, 𝑐 were, 

- |𝑐| represents the amplitude and decreases due to attenuation of light, also Intensity, 𝐼 ∝ |𝑐|2 

- change in phase of 𝑐 is given by exp 2𝜋𝑖𝑙 ∕ 𝜆 

To explain the wave phenomena, Fresnel suggested the integrality condition, where light appears to have 

increased intensity: 

𝛥𝜙 ≡ exp2𝜋𝑖𝐿(𝛾𝐴) ∕ 𝜆 = 1 

11.2.  WAVE EXPRESSION 

MOTIVATION: As always, the aim is to find 𝑐2(𝑞2),  ∀𝑞2 ∈ 𝑧2 given 𝑐1(𝑞1),  ∀𝑞1 ∈ 𝑧1 

PROCEDURE –  

i. Find 𝑐2(𝑞2) for a point 𝑞2 where the wavefunction is the sum of contributions from all 𝑞1.  i.e., 

𝑐2(𝑞2) = ∫𝑎(𝑞1, 𝑞2, 𝜆) exp[2𝜋𝑖(𝐿(𝑞1, 𝑞2)) 𝜆⁄ ] 𝑐1(𝑞1) ⅆ𝑞1 

were exp factor represents the change in phase, while 𝑎 is the attenuation factor together with absolute 

phase of the wave. 

ii. Do this for all 𝑞2.  

11.3.  ATTENUATION COEFFICIENT 

For our purpose, we shall treat the system to be within Gaussian limits. 

Magnitude of Attenuation coefficient – 

Using the fact that total intensity of the light on the 𝑧2 plane is the same as the total intensity of the light 

on the 𝑧1 plane. i.e.,  

∫|𝑐2(𝑞2)|
2ⅆ𝑞2 = ∫|𝑐1(𝑞1)|

2ⅆ𝑞1 

We get,  

|𝑎| = 𝜆−1|det𝐵|−1/2 

Absolute Phase of Attenuation Coefficient – 𝑎 = 𝑢|𝑎| 

PRINCIPLE: At a distance of many wavelengths (i.e., multiples of 𝜆) vertically distant from any stops or 

diaphragms in our apparatus, the light should behave 

approximately as if these stops are not present, i.e., say 

𝑐(𝑞1) = {
𝑐  for  𝑞1 ≥ 0
0  for  𝑞1 < 0

. 

Together with the optical matrix for translation operator 

(
1 ⅆ
0 1

) we have, 

𝑐(𝑞2) = 𝑢𝑐(ⅆ𝜆)
−1/2∫  

∞

0

exp [𝜋𝑖(𝑞2 − 𝑞1)
2/𝜆ⅆ]ⅆ𝑞1 

with the famous Fresnel Integral
8

,  

 
8

 Fresnel Integrals are transcendental functions whose analysis is similar to that of Gaussian Integrals and the Error Function. 

They commonly arise in the description of near-field Fresnel diffraction phenomena. 

A double-end Euler / Cornu spiral. The curve 

continues to converge to the points marked, 

as w tends to positive or negative infinity. 

https://en.wikipedia.org/wiki/Transcendental_function
https://en.wikipedia.org/wiki/Near_and_far_field
https://en.wikipedia.org/wiki/Fresnel_diffraction
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𝜙(𝑤) = ∫  
∞

0

exp [𝜋𝑖(𝑤 − 𝑟)2]ⅆ𝑟 

lim 
𝑤→+∞

𝜙(𝑤) = 𝑒𝜋𝑖/4 ;   lim 
𝑤→−∞

𝜙(𝑤) = 0 

And hence we have the formula, 

𝑐(𝑞2) = exp(∓𝜋𝑖/4) |𝐵𝜆|
−
1
2∫𝑐(𝑞1) exp [

2𝜋𝑖𝐿(𝑞1, 𝑞2)

𝜆
] ⅆ𝑞1   for   𝐵 = ±|𝐵| ... 11-1 

11.4.  FRESNEL TRANSFORMATION VS MATRIC TRANSFORMATION 

To summarize,  

Gaussian Optics Fresnel Optics 

(
𝑞1
𝑝1
) → 𝑀 (

𝑞1
𝑝1
) = (

𝐴𝑞1 + 𝐵𝑝1
𝐶𝑞1 + 𝐷𝑝1

) 

with the optical matric 𝑀 = (
𝐴 𝐵
𝐶 𝐷

) 

𝑐1 → (𝐹𝑐1)(𝑞2) = 

exp (∓𝜋𝑖/4)|𝐵𝜆|−1/2∫𝑐1(𝑞1) × exp[2𝜋𝑖𝐿(𝑞1, 𝑞2)/𝜆] ⅆ𝑞1 

where 𝐿(𝑞1, 𝑞2) =
1

2𝐵
(𝐴𝑞1

2 + 𝐷𝑞2
2 − 2𝑞1𝑞2) + ⅆ for 𝐵 ≠ 0 

- works only for single ray - based on the superposition principle. 

MOTIVATION: It may be tempting to take the correspondence between Gaussian and Fresnel 

operators further. Before proceeding ahead, there is an important observation to make. 

Notice that unlike the Gaussian Operators where 𝑀13 = 𝑀12 ∘ 𝑀23, 𝐹13 ≠ 𝐹12 ∘ 𝐹23 precisely because 

of the 𝑒±𝑖𝜋∕4 factor introduced in the previous section. To rectify this, either, 

i. Ignore the absolute phase factor, or 

ii. Define the operators of Fresnel optics (in the Gaussian approximation) to form a double cover
9

 of 

the group of 2 × 2 matrices of determinant 1. (Since this is more elegant, we shall briefly expand 

upon this). 

The correspondence between Matrix Operators and Fresnel Operators can be easily matched using the 

relevant characteristic Function. Consider a general n-dimensional case of 𝑆𝑝(2𝑛,ℝ), while keeping the 

sign of |𝐵| fixed, we have the generators, 

Gaussian Optics Fresnel Optics in Gaussian Approx. 

- Matrix Operators - Integral Operators / Generators 

(
𝐼 ⅆ𝐼
0 𝐼

) , ⅆ > 0 
(𝑈𝑑𝑐)(𝑥) = exp (−𝜋𝑖𝑛

/4)ⅆ−𝑛/2(2𝜋)−𝑛/2∫exp [𝑖(𝑥 − 𝑦)2/2ⅆ]𝑐(𝑦)ⅆ𝑦 10 

(
𝐼 0
−𝑃 𝐼

) , 𝑃 = 𝑃𝑡 (𝑉p𝑐)(𝑥) = exp (−𝑖𝑃𝑥 ⋅ 𝑥/2)𝑐(𝑥) 

That is, for the map 𝜌,  

𝜌(𝑈𝑑) = (
𝐼 ⅆ
0 𝐼

)   and   𝜌(𝑉P) = (
𝐼 0
−𝑃 𝐼

) 

If 𝐺 = span {𝑈𝑑, 𝑉𝑑} effectively we have a Homomorphism between 𝐺 and 𝑆𝑝(2𝑛,ℝ), since we have 

seen that 𝑆𝑝(2𝑛, ℝ) ≡ span {𝜌(𝑈𝑑), 𝜌(𝑉P)}.  

MOTIVATION: Adding a correction factor when the ray passes through a conjugate point (𝐵 = 0) and 

generalizing, we have the interesting Theorem. 

 
9

 Naively speaking, saying that for example the metaplectic group 𝑀𝑝2𝑛 is a double cover of the symplectic group 𝑆𝑝2𝑛 means 

that there are always two elements in the metaplectic group representing one element in the symplectic group. 
10

 It turns out that this is an incomplete description. Not only does the phase of light get multiplied by eⅈd∕λ as we move along 

a ray. We get an extra factor of −i = e−ⅈπ∕4 ⋅ e−ⅈπ∕4 as the light passes through a conjugate point. Although this may be 

derived within our analysis, we have skipped it for the lack of space. Experimental evidence (Gouy, 1890) 

TABLE I: Gaussian Operators and their Wave Operator counterparts. 

TABLE I: Mapping Gaussian Optics to Fresnel Optics 

https://en.wikipedia.org/wiki/Symplectic_group
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THEOREM 11.2: If 𝑋 ∈ 𝐺 is such that 𝜌(𝑋) = (
𝐴 𝐵
𝐶 𝐷

) with B nonsingular, then the operator X is 

given by, 

(𝑋𝑐)(𝑥) = 𝑖#𝑒−𝜋𝑖𝑛/4|det 𝐵|−1/2(2𝜋)−𝑛/2∫𝑒𝑖𝑊(𝑥,𝑦)𝑐(𝑦)ⅆ𝑦 

where,   𝑊(𝑥, 𝑦) =
1

2
[𝐷𝐵−1𝑥 ⋅ 𝑥 + 𝐵−1𝐴𝑦 ⋅ 𝑦 − 2𝐵𝑡−1𝑦 ⋅ 𝑥]      and     # = {

even if det 𝐵 > 0
odd if det 𝐵 < 0

 

REMARKS – 

- Since 𝝆 is 2 to 1 everywhere; that is, that 𝐺 ≡ Mp(2𝑛,ℝ) is a double covering of the symplectic 

group, 𝑆𝑝(2𝑛,ℝ)and hence called Metaplectic group. 

- Fresnel optics is equivalent to the study of the metaplectic representation of Mp(4,ℝ). 

11.5.  FRESNEL GENERATOR AND QUANTUM MECHANICAL OPERATORS 

MOTIVATION - Just as there was a wave optics that was a more accurate physical theory than 

Hamilton's geometrical optics, there should be a wave mechanics standing in the same relation to 

classical mechanics. We shall show that for linear mechanical systems, a precise mathematical 

analogy may be drawn which turns out to be the relation between the metaplectic representation and 

the symplectic group 𝑆𝑝(𝑛,ℝ). 

DISCLAIMER – This session just aims to provide a glimpse of Geometric Quantization. That means 

to say what follows is not mathematically vigorous and many underlying theorems are oversimplified 

and used without proper justification. A standard treatment is well beyond the scope of this 

manuscript. 

Any family of operators 𝑈(𝑡) ∈ 𝑀𝑝(2𝑛,ℝ) that depend continuously on t and satisfy 𝑈(𝑡1 + 𝑡2) =

𝑈(𝑡1) + 𝑈(𝑡2) is called a one-parameter group of operators. To such group there will correspond one-

parameter group of matrices 𝑀(𝑡), which are close to unity for small |𝑡|. For such small |𝑡| we can 

uniquely recover 𝑈(𝑡) from 𝑀(𝑡), since only one of the two possible choices of the Fresnel operator 

corresponding to 𝑀(𝑡) will be close to the identity. And we have   𝑈(𝑡) = 𝑈𝑛(𝑡/𝑛) 

 

PART I: Since 𝑀(𝑡) is a one-parameter group of symplectic matrices, it can be shown that M depends 

differentiable on 𝑡. 

Take,      𝑀′(0) = 𝐾   ⇒     𝑀(𝑡) = 𝑒𝑡𝐾 

PART II: Also, we can have, 

𝑈′(0)𝑐 = lim
𝑡→0

𝑈(𝑡)𝑐 − 𝑐

𝑡
 

- Here this limit need not exist for all c, but we do expect it to exist for well-behaved c 

It is a standard theorem that 𝑈′(0) is a skew adjoint operator,  

⇒     
𝒅𝑼

𝒅𝒕
= −𝒊𝑯𝑼       −     Schrodinger equation 

PART I PART II 

𝐾 𝑀(𝑡) 𝐻 [𝑈(𝑡)𝑓] 

(
0 1
0 0

) (
1 𝑡
0 1

) −
1

2

ⅆ2

ⅆ𝑥2
 exp (±𝜋𝑖/4)|𝑡|−

1
2∫𝑒𝑖(𝑥−𝑦)

2/2𝑡𝑓(𝑦)ⅆ𝑦 

(
0 0
−1 0

) (
1 0
−𝑡 1

) 
1

2
𝑥2 𝑒−𝑖𝑡𝑥

2/2𝑓(𝑥) 

(
0 1
−1 0

) (
cos 𝑡 sin 𝑡
− sin 𝑡 cos 𝑡

) 
1

2
(−

ⅆ2

ⅆ𝑥2
+ 𝑥2) 

(−𝑖)#𝑒−
𝜋𝑖
4 (|sin 𝑡|2𝜋)−

1
2∫exp {i[cos 𝑡 (𝑥2

+ 𝑦2) − 2𝑥𝑦]/2 sin 𝑡} 𝑓(𝑦)ⅆ𝑦 

 

 

 

TABLE II: The relation between part I and part II are a correspondence between the matric operators, 

𝑀(𝑡) and Fresnel operators, 𝑈(𝑡). For example - the 1
st

 entry represents a constant change in 𝑞 with 𝑡 

which corresponds to the Quantum Hamiltonian of free particle and the last entry corresponds to that 

of Harmonic Oscillator. Further, the last entry is effectively a sum of the first two entries. 
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REMARKS -  

- Notice the advantage that 𝑈(𝑡) is already the solution of 𝐻 for 𝑚 = 1 and ℏ = 1 or replace 𝑡 →

𝑡ℏ ∕ 𝑚. 

- Notice that the mapping between 𝐾 and 𝐻 is linear (on any common domain of definition) – 3
rd

 row 

entry is sum of first two rows. 

- In quantum correspondence we talk of probability density instead of Intensity of square integrable 

functions (𝐿2(ℝ)) 

The general (𝑡 → 𝑡ℏ ∕ 𝑚) Harmonic oscillator solution for phase space is called Mehler’s Formula. For 

the case of the harmonic oscillator the one-parameter group 𝑈(𝑡) is a representation of a compact group, 

the circle, and, hence, on general principles (the Peter-Weyl theorem), the space 𝐿2(ℝ) decomposes 

into a direct sum of irreducible that must be one-dimensional, since the circle is abelian. Thus, 

½(−ⅆ2/ⅆ𝑥2 + 𝑥2) has a discrete spectrum. 
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