Optics and Introduction
to Geometrical
Quantization

JOVI K, READING PROJECT,
20™ SEP 2021




- . i i f .
- ﬁsausman 15 8 special case o linear \
S e w M DptiCS assuming rotational OptiCS
symmeltry
[
I m which is an ignoring
approximation to ] aberrations

geometrical
. . . . optics
AIM — Time evolution / Equation of motion
of Light. Teewastergth | nonaraomn wch

approximation to | as diffraction,

I interference, and
. t polarization

|

i

Quantum Optics
which is a special
. wave case of Maxwellian
Coherent Optics optics electrodynamics
daalir_m. with
Diffractive Optics :caI::]I:ngths
. . and not
(Fourier Optics) discussing the
em:_ss:':an of
Geometrical Optics radiation T
(Aberration theory) ' ignoring
which is an E quantum
Paraxial OptiCS approximation to | effects
(First Order Optics)
(Gaussian Optics) quantum
electrodynamics [

I
e

20-09-2021 READING PROJECT SUMMARY - JOVI K 2




GGaussian Optics

- Ray Optics in Paraxial Approximation

Spherically symmetric rays are specified by (g;, p; = n6;) on
the z; plane.

{AIM — Givenarayon (gq,p1) in z{ find (g5, p2) as}

a function of g4, p1 in z,.

In linear approximation we have,

(52) =) = (¢ ) )
Note that, M,,; = M,, ,_1 ..My > detM =1
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Eikonal and Optical Length

Define,

W =W(q1,92) = (1/2B)(Aqi + Dq; — 2q:9,) + K
with p; = —(0W /dq,) and p, = 0W /0q,

By an appropriate choice of the constant K, we can arrange W (q4, q,) be
the "optical length" of the light ray joining g4 to q-.

L=Lgys+1/2(p292 — P191)
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Fermat’s Principle

Let us fix g, and q, and consider the set of all paths joining q4 to q, that consist of two
segments - from q,to q and from q to q,. Among all such paths, the actual light ray can
be characterized as that path for which the optical length L takes on an extreme value,

that is, for which,
JoL 0
dq B

where,

1
L =nyd; +nyd, + E{("’h /dy)(q — CI1)2 + (np / dy)(qz — CI)Z — qu}

We get a minimum if the conjugate plane to z, does not lie between z, and z, and a
maximum otherwise.
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GGaussian Optics

Any 2 x 2 matrix with determinant 1 can arise as the matrix of some optical
system i.e., there is an isomorphism between SI(2, R) and Gaussian optics.

c 5)=06 e D 7
| N [ R )
Translation  Refraction Translation

AnddetM =1, whereA+sC=1&t =—(B + sD).
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Linear Optics

A ray passing through the xy plane
(given z;) may be specified as,
qx1

u1=

Generalizing Gaussian Optics,

Does all SI(4, R) represent a
transformation matrices in linear
optics ?
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Linear Optics

Does all SI(4, R) represent a transformation matrices in linear optics ?

Nope, BUT,

Linear optics is equivalent to Sp(4,R), the group of linear symplectic
transformations.

Hence, more generally we can show that,
The manifold M of all light rays carries a natural symplectic structure.

Digression | — Symplectic Transformations
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Digression | — Symplectic Transformations

Define a symplectic differential 2-form on a real vector space,
N:VxV->R

l.e.,
- Antisymmetric: 2(u,v) = -2, u);Vu,v eV
- Bilinear: linear in each variable when the other variable is held fixed

- Non degenerate: .(Z(u, _) is not identically zero unless u itself is zero.

A symplectic transformation T on (V, .(2) is such that .Q(Tu, Tu’) = [l(u, u’)
Or equivalently, T*2 = ().
The group of all n-dim Linear symplectic transformations form Sp(n, R)
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Linear Optics

Does all SI(4, R) represent a transformation matrices in linear optics ?

Linear optics is equivalent to Sp(4,R), the group of linear symplectic
transformations

The Proof has two parts —

! O) where P = Pt (with any P) and

I. Physical part — refraction at surface represented by (—P /

— motion in a medium of constant index of refraction by (I dI) where d is the

0 I
optical distance along the axis

ii. Mathematical part — every symplectic matrix can be written as a product of matrices of the
above types
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he manifold of all light rays carries a natural
symplectic structure — Geometric Optics

Ax Ax
. Ay dy
Redefine u; = ng, |3 =| nsing, where n = n(x,y, z)
no, nsin 6,
OR with appropriate choice of the xy plane we may parametrize the ray as,
. xn(x,y,z) yn(x,y,z)
Cle T x(Z) ’ qu o y(Z) yPx = nSlngx — \/1 T 52 +}72 yPx = \/1 T 2 +_’)72

Then, the optical path is,

J'@y) = fn(x, y,2)(1 + %% + y2)Y2dz = f](x, y,%,v,z)dz wherex = dx/dz




he manifold of all light rays carries a natural
symplectic structure — Geometric Optics

More formally,

For an optical path y(z) = (x(2), y(2), z) parametrized by z-axis, we have the optical
path,

J'(y) = jn(x,y, 2)(1 + %% +y2)2%dz = f](x, y,x,v,z)dz where x = dx/dz

Define the map ¢: (qyx, 4y, 2, Px, Py) € R® - (x,¥,2,%,7) € RS,
Ax, = x(2); qy, = y(2) ;
dJ xn(x,y,z)  _d]  yn(xy,2z)

Dy =——=mnsinf, = Py = —=— =
Tdi Yo 12492 Ay [T+ a2 492

And the Legendre Transform function,
J(x,y,2,%,9) = peX + pyy — H(Gx, Gy, 2, Dxs Dy)
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he manifold of all light rays carries a natural
symplectic structure — Geometric Optics

The Tautological 1-form is,
0 = pydq, +pydq, — Hdz
And so, the symplectic form,
do = Q) =dp, Ndq, +dp, Ndq, —dH Adz

This is CLOSED and of RANK 4.

By the standard theorem in the calculus of variations (Loomis and Sternberg,
1968, p. 535),

Y is an extremal of optical length if and only if ¢ o y satisfies
1,d0 = 0 where N € T(doy)

20-09-2021
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he manifold of all light rays carries a natural
symplectic structure — Geometric Optics

Leads to,

dqg, OH dx(¢p™'v) |
X — ¥

dz @ ~ dz
day _ 0H _ dy(¢~"v) .

dz _ p, dz 7
dpy ~ OH
dz ~ 0qy
dp, 0H
dz ~ dq,

Since 1,d6 = 0, flow of the field 7 is a Symplectic Diffeomorphism.




he manifold of all light rays carries a natural
symplectic structure — Geometric Optics

The basic assertion of geometrical optics is that the transformation from
one z-plane to another is a symplectic diffeomorphism.

For two symplectic vector spaces (V;,w) and (V,, w,) of same dimension, a
diffeomorphism ¢:V; = V, is a symplectomorphism if Y*w, = w;.

Alternatively, we may define the [, := graph ¢, in which case the
diffeomorphism ¢ is a symplectomorphism if and only if Iy, is a Lagrangian

submanifold of (I/; x V,, Q), i.e. pullback of the embedding map n:V; © V; X 1,
is zero, "1 = 0.
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Wave Optics — Interference

Fresnel’s integrality condition: 2,
exp 2miL(y,) / A = 1.

Each point of a light ray can be associated with a 9@;1

complex wavefunction, c. S,
o where |c| represents the amplitude and
decreases due to attenuation of light. Young’s Double Slit

Intensity, [ « |c|?
For different light rays arriving
at a point,

[oc ey +cpt o2

o change in phase of c is given by exp 2mil / A
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Wave Optics

[AII\/I —To find ¢,(q,),Vq, € z, given ¢1(q1),Vq, € zl]

PROCEDURE - Find c¢,(qg,) for a point g, where the wavefunction is the sum of
contributions from all g4. i.e.,

c2(qz) = f a(qy, g2, A) exp|2mi(L(q1, q2)) /2] ¢1(q1) dgy

Do this for all g,.

» exp factor represents the change in phase, while

» a is the attenuation factor together with absolute phase of the wave.
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Wave Optics

1. Magnitude of Attenuation coefficient —

Using the fact that total intensity of the light on the z, plane is the same as the
total intensity of the light on the z; plane.i.e.,

f|Cz(CI2)|2dCI2 = f|C1(Q1)|2dCI1
We get,

la| = 2~1|det B|71/2
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Wave Optics

1. Magnitude of Attenuation coefficient — |a| = 17 1|det B|~1/?

2. Absolute Phase of Attenuation Coefficient —a = ula|

Principle — At a distance of many ~.
wavelengths (i.e., multiples of A)
vertically distant from any stops or
diaphragms in our apparatus, the
light should behave approximately
as if these stops are not present.

_jcforq, =0
c(q1) = {O forg; <0
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Wave Optics

er i/4

1. Magnitude of Attenuation coefficient —
la| = 171|det B|~1/2

1. Absolute Phase of Attenuation Coefficient —

Z—

a = ula| )
— “~—
Z—~0
We arrive at the Fresnel Integral, ~ 2>~
0.0)
d(w) = j exp[mi(w — r)?]dr
0 A double-end Euler / Cornu spiral. The
lim ¢(w) = e™/4 . lim d(w) =0 curve continues to converge to the points
wW—+00 ’ W——00

marked, as w tends to positive or
negative infinity.
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Wave Optics

1. Magnitude of Attenuation coefficient — |a| = 171|det B|~1/2

2. Absolute Phase of Attenuation Coefficient —a = u|a|

And hence we have the formula,
c(q,) = exp(Fmi/4) |BA|~1/? Jc(ql)exp[ZniL(ql, q,)/Aldqy

where the phaseofaisu = etim/4 for B = +|B|
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Fresnel Transformation vs Matric transformation

Gaussian Optics Fresnel Optics
(Ch) M (CI1) _ (Aq1 + Bpl) c1 > ¢ =Fc; = (Fey)(qp) =
P1 P1 Cq1 + Dpq
$'4B/1—1/Zf X 2miL(qq,q,) /2] d
with the optical matric M = (/Cl g) exp(+mi/4)|BA| c1(q1) % exp|2miL(q1, q2) /A dq,

where L(q;,q3) = % (Aq% + Dq5 — 2q41q;) +d forB # 0

- works only for single rays - works for any number of rays hits a point
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Fresnel Transformation vs Matric transformation

In the n-dimensional case, Sp(2n, R), where we have the generators,

((I) %I) d>0 (Uac)(x) = exp(—min/4)d™™/2(2m) ™/ f expli(x — y)?/2d]c(y)dy
(_IP ?)P = Pt (Vpc)(x) = exp(—iPx - x/2)c(x)

Define the map p,
pWa) = (5 9) and pv) = (1, )

For G = span {U,,V,;} we have, a Homomorphism between G and Sp(2n, R)
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Fresnel Transformation vs Matric transformation

For G = span {Ug,V,;} we have, a Homomorphism between G and $p(2n, R)

Theorem: If X € G is such that p(X) = (A B

C D) with B nonsingular, then the

operator X is given by

(Xc)(x) = i*e ™4 |det B|~1/2(2m) /2 f eWXY)c(y)dy

where, W(x,y) = % |IDB™1x - x + B™1Ay -y — 2B" 1y - x|

4 evenifdetB > 0
odd ifdetB < 0
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Fresnel Transformation vs Matric transformation

For G = span {U,,V,;} we have, a Homomorphism between G and Sp(2n, R)

Since p is 2 to 1 everywhere; that is, that G = Mp(2n, R) is a double covering of
the symplectic group, Sp(2n, R)and hence called Metaplectic group.

Fresnel optics is equivalent to the study of the metaplectic
representation of Mp (4, ]R).
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Optics and Mechanics

Analogy between Hamiltonian Mechanics and this Formalism -

1. Co-ordinates —

Just like we require phase space coordinates (q,p) to completely specify the

state of a particle in Mechanics, here too we require (g, p) to specify a light ray
(same symplectic form).

2. Core Principle —

Both are based on Optimisation Principles — Variational Principle in case of

Mechanics to find the geodesic while Fermat’s Principle in Optics for the Optical
Trajectory.

20-09-2021
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Fresnel Optics and Quantum Mechanics - |

For a symplectic manifold (X = R?" = R™ + R", w) with a symplectomorphism
Qs X = X. We have,

d
diw=w > Ec]b;w =i )dw+di( ) w=0=>di( ) w=0=i(§)w = dH
O0H 0 O0H 0
dp;0q; 0q; dp;

For the 2-form,w = — 2 dp; ANdq; and &y =

We have the Hamiltonian Equations,

dt 0p,’ dt  dg,
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Fresnel Optics and Quantum Mechanics - |

Define the Poisson bracket by {Hl, Hz} = —¢y, H, or,

S (K H}_Z(’)HlaHz d0H, 0H,
vl L 0q; op;  0q; Op;

And,
Dng(i(sz)a)) =i (DngEHz) w + i(sz)Dnga) Cartan’s Magic Formula

= Dle (dHZ) — _d{Hl' HZ} S0 f{Hl,Hz} — _Dlesz — [le' sz]
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Fresnel Optics and Quantum Mechanics - |

Homogeneous Quadratic Ponnomi%/\g Hamilton’s Equations
OUECIRIE Vector fields Matrix % = 5_1‘1; % = _a_H
polynomials dt  0dp; dt aq;
1, 0 0 1
~p p— (7 o)
2 dq 0 0 ISOMORPHISM between the
algebra of quadratic

lqz —q 9 ( 0 0) homogeneous polynomials (in
2 dp -1 0 two variables) and the

" i_ i (1 0 ) symplectic algebra, sp(2, R).
T9¢ Pap o -1
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Fresnel Optics and Quantum Mechanics - I

M(t) is a one-parameter group of symplectic matrices i.e.,
U(t; +t,) = U(ty) + U(t,) and M depends differentiable on t

Take M'(0) = K » M(t) = et¥

Also, we can have,
U(t)c—c
r

U'(0)c = ll_r)ré

It is a standard theorem that U’(0) is a skew adjoint operator,

dUu
= I = —iHU — Schrodinger equation
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Fresnel Optics and Quantum Mechanics - I

K M(t) H Ut
oo Y L WOAE = e/ I )y
S I G o UOHE) = e 12 (x)
(_O1 (1)) (_C‘;isntt s(‘)r;i) %(—j—;mz) U F(x) = (=) e 5 |sint| 2(2m) "2
< [[expilcost (% + y) = 2xy1/25in 1) F )y

The relation between part | and part Il are a correspondence between the matric operators
(t - th / m), M(t) and Fresnel operators, U(t). For eg: the 1%t entry represents a constant
change in g with t which corresponds to the Quantum Hamiltonian of free particle.
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Skew-symmetric Bilinear Maps

Multilinear Algebra Theorem —

Let () be a skew-symmetric bilinear map on finite dimensional V. Then there is a
basis uq, ..., Uk, .., €1, wv) €n, f1, vy [, OF V such that

Q(u;,v) =0, foralliandallv € V,
Q(ei, ej) =0= Q(f,;,fj), forall i,j, and
Q(el-,fj) = 5l-j, forall i,j.

= Not Unique

=k + 2n = dim V; nis invariant of (V/,Q), 2n is rank of Q

27-09-2021
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Symplectic Space

An antisymmetric, nondegenerate bilinear form (non-degenerate 2-form) on V' is
called a symplectic form.

A symplectic bilinear form is a mapping w:V XV = F that is

Bilinear: linear in each argument separately,

Alternating: w(v,v) = 0 holds forall v € V, and

» Nondegenerate: w(u,v) = 0 forall v € V implies that u is zero. (dim V = 2n)

A vector space possessing a given symplectic form is called a symplectic vector

space (V, ), or is said to have a symplectic structure.

READING PROJECT SUMMARY - JOVI K 3
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Symplectic Space

Space possessing a given symplectic form is called a symplectic vector space
(V, ), or is said to have a symplectic structure.

A symplectic vector space (V, 2) has a basis (eq, ..., e, f1, --., ) satisfying

.Q(ei,f}') — 5,;jand .(Z(e,;,ej) =0= .Q(fl,f])

Such a basis is called a symplectic basis of (V, (2).

Hence, Q(u,v) = [—u —] L(;n 18]

|
v] whereu, v EV XV
|
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Symplectic Transtformation

A symplectomorphism ¢ between symplectic vector spaces (V, ) and
(V', Q") is a linear isomorphism ¢ : V5 V such that ¢p*Q' = Q.

= By definition of pullback, (¢*12")(u, v)[l’(qb(u), gb(v))

If a symplectomorphism exists, (V/,Q) and (V',Q") are said to be
symplectomorphism.

- Equivalence Relation

- May demand condition of Diffeomorphism (on manifolds) in addition
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Symplectic Manifold

A manifold M is symplectic if it contains an addition structure of closed de-Rham
2-form on M.

A de-Rham 2-form / exterior 2-form is a map w,: TpM X T,M — R such that for
eachp € M, w, is skew-symmetric bilinear on the tangent space to M at p, and
wy varies smoothly in p

Example — For M = R?™ with linear coordinates xq, ..., X, ..., Y1, ..., ¥y, Called
canonical basis we have the symplectic form,
n

w = Z dx; \ dy;
i=1
called the Canonical Symplectic Form.

27-09-2021
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Cotangent Bundle as a Symplectic Manitfold

Let X be any n-dimensional manifold with coordinate charts (U, x4, ..., x,,) for
x € Uwithx;:U - Rand M = T"X its cotangent bundle.

It follows that the differentials (dx;),, ..., (dxy), form a basis of the cotangent
space atp, T, X.

= Transition functions between charts are contravariant transformations
Hence, we have the induced map,

T*U —» R2™: (x, () — (xl, ey Xqp) (1, ...,(n)

where x4, ..., x,, (1, ..., {,; are the cotangent coordinates.
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Canonical Forms on Cotangent Bundles

Using the coordinate chart, T*U — R?™: (x,{) » (x{, ..., X, {4, ..., () define
the tautological 1-form a on T*U by

n
a = z Gi dx;
i=1

Further, define the canonical 2-form as,
n
w = —da =dei/\d(i
i=1

- Since « is coordinate independent, w too is!
- dw = —d?a = 0, hence a symplectic form.
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Canonical Forms on Cotangent Bundles

Property of Tautological 1-form —

THEOREM: For the tautological 1-form on T*X and a section s,: X - T"X:x -
(x, U,). We have,
Spa =
PROOF: Let V € T, X be arbitrary, then (write u, € T, X)
T*K P ><
TTR ==K
— .ux(n(x,ﬂx)*sﬂ*v) — .ux((ﬂ © SH)*V) — UX(V) T*K\'*X Q_ﬂz\x__'/‘/x x

(S;“)X(V) = “(x,ux)(su*v) = ”éx,ux)“X(Su*V)
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Lagrangian Submanifolds

Let (M, w) be a 2n-dimensional symplectic manifold.

For the inclusion map, i:Y < M, Y is Lagrangian Submanifold if and only if i*w =
OanddimY =1/2dim M.

Equivalently,

A submanifold Y of M is a Lagrangian Submanifold if, ateachp € Y, ;Y isa

Lagrangian subspace of T, M, i.e., w,, oy = 0and dimT,Y = 1/2dim T, M.

Y
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Lagrangian subspace on Cotangent Bundles

Example —

Using the coordinate chart, T*U = R?™: (x,{) » (x4, o.., Xy, {4, .., () for U ©
Xwe have the canonical 2-form,

n
w=—da =de,;/\d(,;
i=1
The zero section of T*X is,

X, = {(x,0) €eT*X|{ =0 in T*X}

Hence, a = ),;-, {; dx; vanishes on X, N T*U since i*a = 0 for the inclusion
i: Xy © T"X, and so does w.

Hence, the zero section is a Lagrangian submanifold.

27-09-2021 READING PROJECT SUMMARY - JOVI K
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Lagrangian subspace on Cotangent Bundles

There is a one-to-one correspondence between the set of Lagrangian
submanifolds of T*X and the set of closed 1-forms on X.

Lagrangian subspace and Symplectomorphism —

Let (M4, w;1) and (M,, w,) be two 2n-dimensional symplectic manifolds with a
diffeomorphism ¢@: M; = M,.

Define the twisted product space (M; X M,, &), such that

~~

@ = Tiw; — Tsw, and M; X M, € Graph ¢ = {(p,(p(p))|p € Ml}
Theorem —

A diffeomorphism ¢ is a symplectomorphism if and only if [, is a Lagrangian
Submanifold of (M; X M,, @).
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Darboux Theorem

Let (M, w) be a symplectic manifold, and let p be any point in M. Then we can
find a coordinate system (U € M, x4, ..., X, Y1,, -+, V) CeNtered at p such that
on U is symplectomorphism to open subset of R?*" = T*R", the 2-forms is,

n
W = 2 dxl- N dyl
=1

= For any symplectic manifold, the 2-forms look locally the same.
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Lagrangian subspace on Cotangent Bundles

Let M be a differentiable manifold, and p: M X R - M a map, where we set
pe(p) = p(p,t).

By Picard's theorem , In the neighborhood of any point p and for sufficiently
small time t, there is a one-parameter family of local diffeomorphisms p; called
isotopy satisfying,

o
dt
= One parameter family of diffeomorphism: a(t, o(s + x))l =o(t+s,x)

=Veopy and py = ldy

When v; = v is independent of t, the associated isotopy is called the
exponential map or the flow and denoted exp tv.
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Lagrangian subspace on Cotangent Bundles

Let (M, w) be a symplectic manifold and let H: M — R be a smooth function. Its
differential dH is a 1-form. By nondegeneracy, there is a unique vector field Xy

on M such that iy, w = dH.

A vector field Xy, that satisfies 1y, w = dH is called the Hamiltonian Vector
Field corresponding to the integral curve H called Hamiltonian Function.

= X is Hamiltonian © 1y w is exact

Hamiltonian Isotopy is a symplectomorphism, since

d
apfa) = peLy,w = pe(dig,w +ix, {{9}) = 0.

dH 0

15
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Classical Mechanics

Consider Euclidean space R?™ with coordinates (qy, ..., ¢, P1, -, Pr) and wqy =
2dqj Adp;j. The curve p, = (q(t),p(t)) is an integral curve for X exactly if

d OoH d OoH
L =5 =) =
op; - dgq;

oJH 0 O0H 0
Indeed for, Xy = z — we have,

L api dq; 0q; Jp;
n

Lxg® = z lXH(dq] A dp]) Z [(lXquJ) Adp; —dq; A (lXHdpj)]

j:]_ :

S (B ) -
— \Jp; “Pj 0q; i

READING PROJECT SUMMARY - JOVI K
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Classical Mechanics

A Hamiltonian system is a triple (M,w,H), where (M,w) is a symplectic
manifold and H € C* (M, R) is a function, called the Hamiltonian Function.

Theorem — We have {f, H} = 0if and only if f is constant along integral curves

of Xy, in which case its called an integral of motion (or a first integral or a
constant of motion.

Proof — Let p; be the flow of Xy. Then,
d
dt (f e pe) = peLx,f = prix,df = P;:leHlew
= piw(Xz, Xy) = pi{f, H}

27-09-2021
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Lie Derivatives

The motivation is the need for a mechanism to compare two objects (vectors/k-
forms) in two different spaces.

Lie derivative of two Vectors —

T YlXo]

Y
Lx¥ (%) = !egr(l)[ - £

= [X,Y]

Lie derivative of a scalar —

Lyf(xo) = X(f(x0))
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Lie Bracket

PROPERTIES —

= Antisymmetry: LyY = [X, Y] = [V, X] = —L,X

= Bilinearity

= Leibnitzrule: LyYZ =Y(LyZ) + (LyY)Z

= Jacobi Identity: [X, [V, Z]| + |V, [Z, X]| + |[Z, [X, Y]] = O
[Lx, LylZ = |X,[Y,Z]

Y,[X,Z]| = |Xx,[v,Z]| + |v,[Z, X]]
=+|Z,[X, Y]] = LixnZ

27-09-2021
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Cartan’s Magic Formula

A relation relating Lie derivative, exterior derivative, and interior product.

Let w € 21(m) = w, dx* and X = X* 9/, 4, then,
d(iyw) = GV(WMX”) dxV

And,
dw = 1y 1/, [8,w, dx” A dx* + 8,0, dx A dx]
= 1/2 |X#0,w, — XH0,w"]

Hence,
d(iyw) + tydw = Lyw or diy + tyd = Ly
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Poisson Bracket

The Poisson bracket of two functions f,g € C*(M; R) is

N
coordinates af dg af ag
{f,9} = w(Xs, X > =
/9 (X . Xo) (1 0q; dp;  0p; 0q;

l

And, X{f,g} = _[Xf,Xg]

A Poisson algebra is an associative algebra together with a Lie bracket that also
satisfies Leibniz's law.
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Complex Vector Space

A complex structure on a vector space, V is a linear map J: V — V such that J? =
— I and (V,]) is a complex vector space.

For a symplectic vector space (V,2), a complex structure /] on VV is compactible
(2-compactible) if,
G;(u,v) = 2(u,Jv) Yu,v € Visa positive inner product on V

Further, if J is a symplectic transformation i.e., 2(Ju,Jv) = 2(u,v) is called a
Kahlerian vector space.

THEOREM - Let (V, Q) be a symplectic vector space. Then there is a compatible
complex structure J on V.
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Almost Complex Structure

An almost complex structure on a manifold M is a smooth field of complex
structures on T\,

XEMw J:TyM - TyM linear & J? = —I

(M, ]) is an almost complex manifold.

Let (M, w) be a symplectic manifold. An almost complex structure /] on M is
called compatible (with w or w-compatible) if the assignment,

X g T,MXT,M—->R; g,(uv):=w,(ul,v)

is @ Riemannian metric on M.
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Almost Complex Structure

Let (M,w) be a symplectic manifold, and g a Riemannian metric on M. Then there
exists a canonical almost complex structure J on M which is compatible.

Data Condition/Technique Consequence Question
o(Ju,Jv) = o(u,v) g(u,v) = o(u,Jv) 0

D, o (u,Ju) > 0,u# 0 1S positive inner product e
g(Ju,Jv) = g(u,v) o(u,v) :=g(Ju,v) 5

8:J (1.e., J 1s orthogonal) 1s nondeg., skew-symm. @ closed]

®,g  polar decomposition ~» J almost complex str. J integrable?
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