Optics and Introduction to Geometrical Quantization

JOVI K, READING PROJECT, 20TH SEP 2021

Bird's Eye view of Optics

AIM – Time evolution / Equation of motion of Light.

Gaussian Optics

- Ray Optics in Paraxial Approximation

Spherically symmetric rays are specified by $(q_i, p_i = n\theta_i)$ on the z_i plane.

AIM – Given a ray on (q_1, p_1) in z_1 find (q_2, p_2) as a function of q_1, p_1 in z_2 .

In linear approximation we have,

$$\binom{q_2}{p_2} = M_{21} \binom{q_1}{p_1} = \binom{A \quad B}{C \quad D} \binom{q_1}{p_1}$$

Note that, $M_{n1} = M_{n n-1} \dots M_{21} \Rightarrow \det M = 1$

Eikonal and Optical Length

Define,

$$W = W(q_1, q_2) = (1/2B) (Aq_1^2 + Dq_2^2 - 2q_1q_2) + K$$

with $p_1 = -(\partial W/\partial q_1)$ and $p_2 = \partial W/\partial q_2$

By an appropriate choice of the constant K, we can arrange $W(q_1, q_2)$ be the "optical length" of the light ray joining q_1 to q_2 .

$$L = L_{axis} + 1/2(p_2q_2 - p_1q_1)$$

Fermat's Principle

Let us fix q_1 and q_2 and consider the set of all paths joining q_1 to q_2 that consist of two segments - from q_1 to q and from q to q_2 . Among all such paths, the actual light ray can be characterized as that path for which the optical length L takes on an **extreme value**, that is, for which,

$$\frac{\partial L}{\partial q} = 0$$

where,

$$L = n_1 d_1 + n_2 d_2 + \frac{1}{2} \{ (n_1 / d_1)(q - q_1)^2 + (n_2 / d_2)(q_2 - q)^2 - Pq^2 \}$$

We get a minimum if the conjugate plane to z_1 does not lie between z_1 and z_2 and a maximum otherwise.

Gaussian Optics

Any 2 x 2 matrix with determinant 1 can arise as the matrix of some optical system i.e., there is an *isomorphism between* $Sl(2, \mathbb{R})$ *and Gaussian optics*.

$$\begin{pmatrix} A & B \\ C & D \end{pmatrix} = \begin{pmatrix} 1 & -s \\ 0 & 1 \end{pmatrix} \begin{pmatrix} 1 & 0 \\ C & 1 \end{pmatrix} \begin{pmatrix} 1 & -t \\ 0 & 1 \end{pmatrix}$$

Translation Refraction Translation

And det M = 1, where A + sC = 1 & t = -(B + sD).

A ray passing through the xy plane (given z_i) may be specified as,

$$u_1 = \begin{pmatrix} q_{x_1} \\ q_{y_2} \\ p_{x_1} \\ p_{y_2} \end{pmatrix}$$

Generalizing Gaussian Optics,

Does all $Sl(4, \mathbb{R})$ represent a transformation matrices in linear optics ?

Linear Optics

Does all $Sl(4, \mathbb{R})$ represent a transformation matrices in linear optics ?

Nope, BUT,

<u>Linear optics is equivalent to $Sp(4, \mathbb{R})$ </u>, the group of linear symplectic transformations.

Hence, more generally we can show that, **The manifold M of all light rays carries a natural symplectic structure.**

Digression I – Symplectic Transformations

Digression I – Symplectic Transformations

Define a symplectic differential 2-form on a real vector space, $\Omega: V \times V \to \mathbb{R}$

i.e.,

- Antisymmetric: $\Omega(u, v) = -\Omega(v, u); \forall u, v \in V$
- Bilinear: linear in each variable when the other variable is held fixed
- Non degenerate: $\Omega(u,)$ is not identically zero unless u itself is zero.

A symplectic transformation T on (V, Ω) is such that $\Omega(Tu, Tu') = \Omega(u, u')$ Or equivalently, $T^*\Omega = \Omega$.

The group of all n-dim Linear symplectic transformations form $Sp(n, \mathbb{R})$

Linear Optics

Does all $Sl(4, \mathbb{R})$ represent a transformation matrices in linear optics ?

<u>Linear optics is equivalent to $Sp(4, \mathbb{R})$ </u>, the group of linear symplectic transformations

The Proof has two parts –

- i. Physical part refraction at surface represented by $\begin{pmatrix} I & 0 \\ -P & I \end{pmatrix}$ where $P = P^t$ (with any P) and motion in a medium of constant index of refraction by $\begin{pmatrix} I & dI \\ 0 & I \end{pmatrix}$ where d is the optical distance along the axis
- ii. Mathematical part every symplectic matrix can be written as a product of matrices of the above types

Redefine
$$u_1 = \begin{pmatrix} q_x \\ q_y \\ n\theta_x \\ n\theta_y \end{pmatrix}$$
 as $u_1 = \begin{pmatrix} q_x \\ q_y \\ n\sin\theta_x \\ n\sin\theta_y \end{pmatrix}$ where $n \equiv n(x, y, z)$

OR with appropriate choice of the xy plane we may parametrize the ray as,

$$q_{x_1} = x(z) \; ; \; q_{y_2} = y(z) \; ; \\ p_x = n \sin \theta_x = \frac{\dot{x}n(x, y, z)}{\sqrt{1 + \dot{x}^2 + \dot{y}^2}} \; ; \\ p_x = \frac{\dot{y}n(x, y, z)}{\sqrt{1 + \dot{x}^2 + \dot{y}^2}}$$

Then, the optical path is,

$$J'(\gamma) = \int n(x, y, z)(1 + \dot{x}^2 + \dot{y}^2)^{1/2} dz = \int J(x, y, \dot{x}, \dot{y}, z) dz \text{ where } \dot{x} = dx/dz$$

More formally,

For an optical path $\gamma(z) = (x(z), y(z), z)$ parametrized by z-axis, we have the optical path,

$$J'(\gamma) = \int n(x, y, z)(1 + \dot{x}^2 + \dot{y}^2)^{1/2} dz = \int J(x, y, \dot{x}, \dot{y}, z) dz \text{ where } \dot{x} = dx/dz$$

Define the map $\phi: (q_x, q_y, z, p_x, p_y) \in \mathbb{R}^5 \to (x, y, z, \dot{x}, \dot{y}) \in \mathbb{R}^5$,

$$q_{x_1} = x(z) ; \ q_{y_2} = y(z) ;$$
$$p_x = \frac{d\mathbf{J}}{d\dot{x}} = n \sin \theta_x = \frac{\dot{x}n(x, y, z)}{\sqrt{1 + \dot{x}^2 + \dot{y}^2}} ; p_y = \frac{d\mathbf{J}}{d\dot{y}} = \frac{\dot{y}n(x, y, z)}{\sqrt{1 + \dot{x}^2 + \dot{y}^2}}$$

And the Legendre Transform function,

$$J(x, y, z, \dot{x}, \dot{y}) = p_x \dot{x} + p_y \dot{y} - H(q_x, q_y, z, p_x, p_y)$$

The Tautological 1-form is,

$$\theta = p_x dq_x + p_y dq_y - Hdz$$

And so, the symplectic form,

$$d\theta = \Omega = dp_x \wedge dq_x + dp_y \wedge dq_y - dH \wedge dz$$

This is CLOSED and of RANK 4.

By the standard theorem in the calculus of variations (Loomis and Sternberg, 1968, p. 535),

 γ is an extremal of optical length if and only if $\phi \circ \dot{\gamma}$ satisfies $\iota_{\eta} d\theta = 0$ where $\eta \in T(\phi \circ \dot{\gamma})$

Leads to,

$$\frac{dq_x}{dz} = \frac{\partial H}{\partial p_x} \Rightarrow \frac{dx(\phi^{-1}v)}{dz} = \dot{x}$$
$$\frac{dq_y}{dz} = \frac{\partial H}{\partial p_y} \Rightarrow \frac{dy(\phi^{-1}v)}{dz} = \dot{y}$$
$$\frac{dp_x}{dz} = -\frac{\partial H}{\partial q_x}$$
$$\frac{dp_y}{dz} = -\frac{\partial H}{\partial q_y}$$

Since $\iota_{\eta} d\theta = 0$, flow of the field η is a **Symplectic Diffeomorphism**.

The basic assertion of geometrical optics is that the <u>transformation from</u> <u>one z-plane to another</u> is a **symplectic diffeomorphism**.

For two symplectic vector spaces (V_1, ω_1) and (V_2, ω_2) of same dimension, a diffeomorphism $\phi: V_1 \xrightarrow{\sim} V_2$ is a symplectomorphism if $\psi^* \omega_2 = \omega_1$.

Alternatively, we may define the $\Gamma_{\phi} \coloneqq \text{graph } \phi$, in which case the diffeomorphism ϕ is a symplectomorphism if and only if Γ_{ϕ} is a **Lagrangian submanifold** of $(V_1 \times \overline{V}_2, \Omega)$, i.e. pullback of the embedding map $\eta: V_1 \hookrightarrow V_1 \times V_2$ is zero, $\eta^* \Omega = 0$.

Wave Optics – Interference

Fresnel's integrality condition: $\exp 2\pi i L(\gamma_A) / \lambda = 1.$

Each point of a light ray can be associated with a complex wavefunction, *c*.

 \circ where |c| represents the amplitude and decreases due to **attenuation** of light.

Intensity, $I \propto |c|^2$

• change in phase of *c* is given by $\exp 2\pi i l / \lambda$

Young's Double Slit

For different light rays arriving at a point,

$$I \propto |c_1 + c_2 + \cdots|^2$$

AIM – To find $c_2(q_2)$, $\forall q_2 \in z_2$ given $c_1(q_1)$, $\forall q_1 \in z_1$

PROCEDURE – Find $c_2(q_2)$ for a point q_2 where the wavefunction is the sum of contributions from all q_1 . i.e.,

$$c_2(q_2) = \int a(q_1, q_2, \lambda) \exp[2\pi i (L(q_1, q_2))/\lambda] c_1(q_1) dq_1$$

Do this for all q_2 .

- > exp factor represents the change in phase, while
- $\geq a$ is the attenuation factor together with **absolute phase** of the wave.

1. <u>Magnitude of Attenuation coefficient</u> –

Using the fact that total intensity of the light on the z_2 plane is the same as the total intensity of the light on the z_1 plane. i.e.,

$$\int |c_2(q_2)|^2 dq_2 = \int |c_1(q_1)|^2 dq_1$$

We get,

```
|a| = \lambda^{-1} |\det B|^{-1/2}
```

- 1. Magnitude of Attenuation coefficient $|a| = \lambda^{-1} |det B|^{-1/2}$
- 2. <u>Absolute Phase of Attenuation Coefficient</u> -a = u|a|

Principle – At a distance of many wavelengths (i.e., multiples of λ) vertically distant from any stops or diaphragms in our apparatus, the light should behave approximately as if these stops are not present.

1. Magnitude of Attenuation coefficient –

$$|a| = \lambda^{-1} |\det B|^{-1/2}$$

1. <u>Absolute Phase of Attenuation Coefficient</u> –

a = u|a|

We arrive at the Fresnel Integral,

$$\phi(w) = \int_0^\infty \exp[\pi i(w-r)^2] dr$$
$$\lim_{w \to +\infty} \phi(w) = e^{\pi i/4}; \quad \lim_{w \to -\infty} \phi(w) = 0$$

A double-end Euler / Cornu spiral. The curve continues to converge to the points marked, as w tends to positive or negative infinity.

- 1. Magnitude of Attenuation coefficient $|a| = \lambda^{-1} |det B|^{-1/2}$
- 2. <u>Absolute Phase of Attenuation Coefficient</u> -a = u|a|

And hence we have the formula,

$$c(q_2) = \exp(\mp \pi i/4) |B\lambda|^{-1/2} \int c(q_1) \exp[2\pi i L(q_1, q_2)/\lambda] dq_1$$

where the phase of a is $u = e^{\mp i \pi/4}$ for $B = \pm |B|$

$\binom{q_1}{p_1}$

Gaussian Optics

Fresnel Optics

$$\binom{1}{1} \to M\binom{q_1}{p_1} = \binom{Aq_1 + Bp_1}{Cq_1 + Dp_1}$$

with the optical matric
$$M = \begin{pmatrix} A & B \\ C & D \end{pmatrix}$$

$$\exp(\mp \pi i/4)|B\lambda|^{-1/2} \int c_1(q_1) \times \exp[2\pi i L(q_1, q_2)/\lambda] dq_1$$

 $c_1 \rightarrow c_2 = Fc_1 \equiv (Fc_1)(q_2) =$

where
$$L(q_1, q_2) = \frac{1}{2B}(Aq_1^2 + Dq_2^2 - 2q_1q_2) + d$$
 for $B \neq 0$

- works only for single rays

- works for any number of rays hits a point

In the n-dimensional case, $Sp(2n, \mathbb{R})$, where we have the generators,

$$\begin{pmatrix} I & dI \\ 0 & I \end{pmatrix}, d > 0 \qquad (U_d c)(x) = \exp(-\pi i n/4) d^{-n/2} (2\pi)^{-n/2} \int \exp[i(x-y)^2/2d] c(y) dy$$
$$\begin{pmatrix} I & 0 \\ -P & I \end{pmatrix}, P = P^t \qquad (V_p c)(x) = \exp(-iPx \cdot x/2) c(x)$$

Define the map ρ ,

$$\rho(U_d) = \begin{pmatrix} I & d \\ 0 & I \end{pmatrix} \text{ and } \rho(V_P) = \begin{pmatrix} I & 0 \\ -P & I \end{pmatrix}$$

For $G = \text{span} \{U_d, V_d\}$ we have, a **Homomorphism between** G and $Sp(2n, \mathbb{R})$

For $G = \text{span} \{U_d, V_d\}$ we have, a Homomorphism between G and $Sp(2n, \mathbb{R})$

Theorem: If $X \in G$ is such that $\rho(X) = \begin{pmatrix} A & B \\ C & D \end{pmatrix}$ with B nonsingular, then the operator X is given by

$$(Xc)(x) = i^{\#}e^{-\pi i n/4} |\det B|^{-1/2} (2\pi)^{-n/2} \int e^{iW(x,y)} c(y) dy$$

where,
$$W(x, y) = \frac{1}{2} \left[DB^{-1}x \cdot x + B^{-1}Ay \cdot y - 2B^{t-1}y \cdot x \right]$$

= $\begin{cases} \text{even if det } B > 0 \\ \text{odd if det } B < 0 \end{cases}$

For $G = \text{span} \{U_d, V_d\}$ we have, a **Homomorphism between** G and $\text{Sp}(2n, \mathbb{R})$

Since ρ is 2 to 1 everywhere; that is, that $G \equiv Mp(2n, \mathbb{R})$ is a double covering of the symplectic group, $Sp(2n, \mathbb{R})$ and hence called Metaplectic group.

Fresnel optics is equivalent to the study of the metaplectic representation of $Mp(4, \mathbb{R})$.

Optics and Mechanics

Analogy between Hamiltonian Mechanics and this Formalism -

1. Co-ordinates –

Just like we require *phase space coordinates* (q, p) to completely specify the state of a particle in Mechanics, here too we require (q, p) to specify a light ray (same *symplectic form*).

2. Core Principle –

Both are based on Optimisation Principles – Variational Principle in case of Mechanics to find the geodesic while Fermat's Principle in Optics for the Optical Trajectory.

Fresnel Optics and Quantum Mechanics - I

For a symplectic manifold $(X = \mathbb{R}^{2n} = \mathbb{R}^n + \mathbb{R}^n, \omega)$ with a symplectomorphism $\phi_t: X \to X$. We have,

$$\phi_t^* \omega = \omega \Rightarrow \frac{d}{dt} \phi_t^* \omega = i(\xi) \, d\omega + di(\xi) \omega = 0 \Rightarrow di(\xi) \omega = 0 \Rightarrow i(\xi) \omega = dH$$

For the 2-form, $\omega = -\sum dp_i \wedge dq_i$ and $\xi_H = \sum \frac{\partial H}{\partial p_i} \frac{\partial}{\partial q_i} - \frac{\partial H}{\partial q_i} \frac{\partial}{\partial p_i}$

We have the Hamiltonian Equations,

$$\frac{dq_i}{dt} = \frac{\partial H}{\partial p_i}; \qquad \frac{dp_i}{dt} = -\frac{\partial H}{\partial q_i}$$

Fresnel Optics and Quantum Mechanics - I

Define the Poisson bracket by $\{H_1, H_2\} = -\xi_{H_1}H_2$ or, $\Rightarrow \{H_1, H_2\} = \sum \frac{\partial H_1}{\partial q_i} \frac{\partial H_2}{\partial p_i} - \frac{\partial H_2}{\partial q_i} \frac{\partial H_1}{\partial p_i}$

And,

$$D_{\xi_{H_1}}(i(\xi_{H_2})\omega) = i(D_{\xi_{H_1}}\xi_{H_2})\omega + i(\xi_{H_2})D_{\xi_{H_1}}\omega \quad \text{Carta}n's \text{ Magic Formula}$$

$$\Rightarrow D_{\xi_{H_1}}(dH_2) = -d\{H_1, H_2\} \text{ so } \xi_{\{H_1, H_2\}} = -D_{\xi_{H_1}}\xi_{H_2} = [\xi_{H_1}, \xi_{H_2}]$$

Fresnel Optics and Quantum Mechanics - I

Fresnel Optics and Quantum Mechanics - II

M(t) is a **one-parameter group** of symplectic matrices i.e.,

 $U(t_1 + t_2) = U(t_1) + U(t_2)$ and M depends differentiable on t

Take $M'(0) = K \rightarrow M(t) = e^{tK}$

Also, we can have,

$$U'(0)c = \lim_{t \to 0} \frac{U(t)c - c}{t}$$

It is a standard theorem that U'(0) is a skew adjoint operator,

$$\Rightarrow \quad \frac{dU}{dt} = -iHU \quad - \quad \text{Schrodinger equation}$$

Fresnel Optics and Quantum Mechanics - II

The relation between part I and part II are a correspondence between the matric operators $(t \rightarrow t\hbar / m), M(t)$ and Fresnel operators, U(t). For eg: the 1st entry represents a constant change in q with t which corresponds to the Quantum Hamiltonian of free particle.

SYMPLECTIC GEOMETRY

JOVI K, READING PROJECT, 27^{TH} SEP 2021

Skew-symmetric Bilinear Maps

Multilinear Algebra Theorem –

Let Ω be a skew-symmetric bilinear map on finite dimensional V. Then there is a basis $u_1, \ldots, u_k, \ldots, e_1, \ldots, e_n, f_1, \ldots, f_n$ of V such that

$$\begin{aligned} \Omega(u_i, v) &= 0, & \text{for all } i \text{ and all } v \in V, \\ \Omega(e_i, e_j) &= 0 = \Omega(f_i, f_j), & \text{for all } i, j, \text{ and} \\ \Omega(e_i, f_j) &= \delta_{ij}, & \text{for all } i, j. \end{aligned}$$

- Not Unique
- $k + 2n = \dim V$; n is invariant of (V, Ω) , 2n is rank of Ω

Symplectic Space

An antisymmetric, nondegenerate bilinear form (non-degenerate 2-form) on V is called a symplectic form.

A symplectic bilinear form is a mapping $\omega: V \times V \to F$ that is

- Bilinear: linear in each argument separately,
- Alternating: $\omega(v, v) = 0$ holds for all $v \in V$, and
- Nondegenerate: $\omega(u, v) = 0$ for all $v \in V$ implies that u is zero. (dim V = 2n)

A vector space possessing a given symplectic form is called a **symplectic vector** space (V, Ω) , or is said to have a **symplectic structure**.

Symplectic Space

Space possessing a given symplectic form is called a **symplectic vector space** (V, Ω) , or is said to have a **symplectic structure**.

A symplectic vector space (V, Ω) has a basis $(e_1, \dots, e_n, f_1, \dots, f_n)$ satisfying

$$\Omega(e_i, f_j) = \delta_{ij} \text{ and } \Omega(e_i, e_j) = 0 = \Omega(f_i, f_j)$$

Such a basis is called a **symplectic basis** of (V, Ω) .

Hence,
$$\Omega(u, v) = [-u -] \begin{bmatrix} 0 & I_n \\ -I_n & 0 \end{bmatrix} \begin{bmatrix} 1 \\ v \\ 1 \end{bmatrix}$$
 where $u, v \in V \times V$

Symplectic Transformation

A symplectomorphism ϕ between symplectic vector spaces (V, Ω) and (V', Ω') is a linear isomorphism $\phi : V \xrightarrow{\sim} V$ such that $\phi^* \Omega' = \Omega$.

• By definition of pullback, $(\varphi^*\Omega')(u,v)\Omega'(\phi(u),\phi(v))$

If a symplectomorphism exists, (V, Ω) and (V', Ω') are said to be symplectomorphism.

- Equivalence Relation

- May demand condition of Diffeomorphism (on manifolds) in addition

Symplectic Manifold

A manifold *M* is symplectic if it contains an addition structure of *closed* de-Rham 2-form on *M*.

A de-Rham 2-form / exterior 2-form is a map $\omega_p: T_PM \times T_pM \to \mathbb{R}$ such that for each $p \in M$, ω_p is *skew-symmetric bilinear* on the **tangent space to M at p**, and ω_p varies smoothly in p

Example – For $M = \mathbb{R}^{2n}$ with linear coordinates $x_1, \dots, x_n, \dots, y_1, \dots, y_n$ called **canonical basis** we have the symplectic form,

$$\omega = \sum_{i=1}^{n} dx_i \wedge dy_i$$

called the Canonical Symplectic Form.

Cotangent Bundle as a Symplectic Manifold

Let X be any n-dimensional manifold with coordinate charts $(U, x_1, ..., x_n)$ for $x \in U$ with $x_i: U \to R$ and $M = T^*X$ its cotangent bundle.

It follows that the differentials $(dx_1)_p, \dots, (dx_n)_p$ form a basis of the cotangent space at p, T_p^*X .

Transition functions between charts are contravariant transformations

Hence, we have the induced map,

$$T^*U \to \mathbb{R}^{2n}: (x, \zeta) \mapsto (x_1, \dots, x_n, \zeta_1, \dots, \zeta_n)$$

where $x_1, \ldots, x_n, \zeta_1, \ldots, \zeta_n$ are the cotangent coordinates.

Canonical Forms on Cotangent Bundles

Using the coordinate chart, $T^*U \to \mathbb{R}^{2n}$: $(x, \zeta) \mapsto (x_1, \dots, x_n, \zeta_1, \dots, \zeta_n)$ define the tautological 1-form α on T^*U by

$$\alpha = \sum_{i=1}^{n} \zeta_i \, dx_i$$

Further, define the canonical 2-form as,

$$\omega = -d\alpha = \sum_{i=1}^{n} dx_i \wedge d\zeta_i$$

- Since α is coordinate independent, ω too is!
- $d\omega = -d^2\alpha = 0$, hence a symplectic form.

Canonical Forms on Cotangent Bundles

Property of Tautological 1-form –

THEOREM: For the tautological 1-form on T^*X and a section $s_{\mu}: X \to T^*X: x \mapsto (x, \mu_x)$. We have,

$$s_{\mu}^* \alpha = \mu$$

PROOF: Let $V \in T_x X$ be arbitrary, then (write $\mu_x \in T_x^* X$)

$$(s_{\mu}^{*}\alpha)_{x}(V) = \alpha_{(x,\mu_{x})}(s_{\mu*}V) = \pi_{(x,\mu_{x})}^{*}\mu_{x}(s_{\mu*}V)$$

$$= \mu_{x}(\pi_{(x,\mu_{x})*}s_{\mu*}V) = \mu_{x}((\pi \circ s_{\mu})_{*}V) = \mu_{x}(V)$$

$$T^{*}T^{*}X \xrightarrow{\pi}T^{*}X$$

Let (M, ω) be a 2n-dimensional symplectic manifold.

For the inclusion map, $i: Y \hookrightarrow M$, Y is Lagrangian Submanifold if and only if $i^* \omega = 0$ and dim $Y = 1/2 \dim M$.

Equivalently,

A submanifold Y of M is a Lagrangian Submanifold if, at each $p \in Y$, T_pY is a Lagrangian subspace of T_pM , i.e., $\omega_p|_{TpY} = 0$ and dim $T_pY = 1/2 \dim T_pM$.

Lagrangian subspace on Cotangent Bundles

Example –

Using the coordinate chart, $T^*U \to \mathbb{R}^{2n}$: $(x, \zeta) \mapsto (x_1, \dots, x_n, \zeta_1, \dots, \zeta_n)$ for $U \subseteq X$ we have the canonical 2-form,

$$\omega = -d\alpha = \sum_{i=1}^{n} dx_i \wedge d\zeta_i$$

The zero section of T^*X is,

$$X_0 \coloneqq \{(x,\zeta) \in T^*X | \zeta = 0 \text{ in } T^*X \}$$

Hence, $\alpha = \sum_{i=1}^{n} \zeta_i dx_i$ vanishes on $X_0 \cap T^*U$ since $i^*\alpha = 0$ for the inclusion $i: X_0 \hookrightarrow T^*X$, and so does ω .

Hence, the zero section is a Lagrangian submanifold.

Lagrangian subspace on Cotangent Bundles

There is a one-to-one correspondence between the set of Lagrangian submanifolds of T^*X and the set of closed 1-forms on X.

Lagrangian subspace and Symplectomorphism –

Let (M_1, ω_1) and (M_2, ω_2) be two 2n-dimensional symplectic manifolds with a diffeomorphism $\varphi: M_1 \xrightarrow{\sim} M_2$.

Define the twisted product space $(M_1 \times \overline{M_2}, \widetilde{\omega})$, such that

$$\widetilde{\omega} \coloneqq \pi_1^* \omega_1 - \pi_2^* \omega_2 \text{ and } M_1 \times \overline{M_2} \in \text{Graph } \varphi = \{ (p, \varphi(p)) | p \in M_1 \}$$

Theorem –

A diffeomorphism φ is a symplectomorphism if and only if Γ_{φ} is a Lagrangian Submanifold of $(M_1 \times \overline{M_2}, \widetilde{\omega})$.

Darboux Theorem

Let (M, ω) be a symplectic manifold, and let p be any point in M. Then we can find a coordinate system $(U \subset M, x_1, ..., x_n, y_1, ..., y_n)$ centered at p such that on U is symplectomorphism to open subset of $\mathbb{R}^{2n} = T^* \mathbb{R}^n$, the 2-forms is,

$$\omega = \sum_{i=1}^{n} dx_i \wedge dy_i$$

• For any symplectic manifold, the 2-forms look locally the same.

Lagrangian subspace on Cotangent Bundles

Let *M* be a differentiable manifold, and $\rho: M \times \mathbb{R} \to M$ a map, where we set $\rho_t(p) \coloneqq \rho(p, t)$.

By Picard's theorem , In the neighborhood of any point p and for sufficiently small time t, there is a one-parameter family of local diffeomorphisms ρ_t called **isotopy** satisfying,

$$\frac{\partial \rho_t}{dt} = v_t \circ \rho_t \text{ and } \rho_0 = id_M$$

• One parameter family of diffeomorphism: $\sigma(t, \sigma(s+x))1 = \sigma(t+s, x)$

When $v_t = v$ is independent of t, the associated isotopy is called the exponential map or the flow and denoted exp tv.

Lagrangian subspace on Cotangent Bundles

Let (M, ω) be a symplectic manifold and let $H: M \to R$ be a smooth function. Its differential dH is a 1-form. By nondegeneracy, there is a unique vector field X_H on M such that $\iota_{X_H} \omega = dH$.

A vector field X_H , that satisfies $\iota_{X_H}\omega = dH$ is called the Hamiltonian Vector Field corresponding to the integral curve H called Hamiltonian Function.

• X is Hamiltonian $\Leftrightarrow \iota_X \omega$ is exact

Hamiltonian Isotopy is a symplectomorphism, since

$$\frac{d}{dt}\rho_t^*\omega = \rho_t^*\mathcal{L}_{X_H}\omega = \rho_t^*(d\underset{\widetilde{dH}}{\iota_{X_H}\omega} + \iota_{X_H}\underset{\widetilde{0}}{\underline{d\omega}}) = 0.$$

Classical Mechanics

Consider Euclidean space \mathbb{R}^{2n} with coordinates $(q_1, \dots, q_n, p_1, \dots, p_n)$ and $\omega_0 = \Sigma dq_j \wedge dp_j$. The curve $\rho_t = (q(t), p(t))$ is an integral curve for X_H exactly if

$$\frac{dq_i}{dt}(t) = \frac{\partial H}{\partial p_i}; \frac{dp_i}{dt}(t) = -\frac{\partial H}{\partial q_i}$$

Indeed for, $X_H = \sum_{i=1}^n \left(\frac{\partial H}{\partial p_i}\frac{\partial}{\partial q_i} - \frac{\partial H}{\partial q_i}\frac{\partial}{\partial p_i}\right)$ we have,
 $\iota_{X_H}\omega = \sum_{j=1}^n \iota_{X_H}(dq_j \wedge dp_j) = \sum_{j=1}^n \left[(\iota_{X_H}dq_j) \wedge dp_j - dq_j \wedge (\iota_{X_H}dp_j)\right]$
$$= \sum_{j=1}^n \left(\frac{\partial H}{\partial p_j}dp_j + \frac{\partial H}{\partial q_j}dq_j\right) = dH$$

Classical Mechanics

A Hamiltonian system is a triple (M, ω, H) , where (M, ω) is a symplectic manifold and $H \in C^{\infty}(M, \mathbb{R})$ is a function, called the Hamiltonian Function.

Theorem – We have $\{f, H\} = 0$ if and only if f is constant along integral curves of X_H , in which case its called an integral of motion (or a first integral or a constant of motion.

Proof – Let ρ_t be the flow of X_H . Then,

$$\frac{d}{dt}(f \circ \rho_t) = \rho_t^* \mathcal{L}_{X_H} f = \rho_t^* \iota_{X_H} df = \rho_t^* \iota_{X_H} \iota_{X_f} \omega$$
$$= \rho_t^* \omega (X_f, X_H) = \rho_t^* \{f, H\}$$

Lie Derivatives

The motivation is the need for a mechanism to compare two objects (vectors/k-forms) in two different spaces.

Lie derivative of two Vectors – $[\tilde{Y}] - Y|_{r}$

$$\mathcal{L}_X Y(x_0) = \lim_{\varepsilon \to 0} \left[\frac{\prod_{x_0} \prod_{x_0} \prod_{x_0}}{\varepsilon} \right]$$
$$= [X, Y]$$

Lie derivative of a scalar – $\mathcal{L}_X f(x_0) = X(f(x_0))$

Lie Bracket

PROPERTIES –

- Antisymmetry: $\mathcal{L}_X Y = [X, Y] = -[Y, X] = -\mathcal{L}_Y X$
- Bilinearity
- Leibnitz rule: $\mathcal{L}_X YZ = Y(\mathcal{L}_X Z) + (\mathcal{L}_X Y)Z$
- Jacobi Identity: [X, [Y, Z]] + [Y, [Z, X]] + [Z, [X, Y]] = 0 $[\mathcal{L}_X, \mathcal{L}_Y]Z = [X, [Y, Z]] - [Y, [X, Z]] = [X, [Y, Z]] + [Y, [Z, X]]$ $= +[Z, [X, Y]] = \mathcal{L}_{[X,Y]}Z$

A relation relating Lie derivative, exterior derivative, and interior product.

Let
$$\omega \in \Omega^1(m) \coloneqq \omega_\mu \, \mathrm{d} x^\mu$$
 and $X = X^{\mu \partial} /_{\partial x^\mu}$, then,
 $\mathrm{d}(\iota_X \omega) = \partial_\nu (w_\mu X^\mu) \, \mathrm{d} X^\nu$

And,

$$\iota_{X}d\omega = \iota_{X} \frac{1}{2} \left[\partial_{\nu}\omega_{\mu} dx^{\nu} \wedge dx^{\mu} + \partial_{\mu}\omega_{\nu} dx^{\mu} \wedge dx^{\nu} \right]$$
$$= \frac{1}{2} \left[X^{\mu}\partial_{\nu}\omega_{\mu} - X^{\mu}\partial_{\mu}\omega^{\nu} \right]$$

Hence,

$$d(\iota_X \omega) + \iota_X d\omega = \mathcal{L}_X \omega$$
 or $d\iota_X + \iota_X d = \mathcal{L}_X$

Poisson Bracket

The Poisson bracket of two functions $f, g \in C^{\infty}(M; \mathbb{R})$ is $\{f, g\} \coloneqq \omega(X_f, X_g) \xrightarrow{coordinates} \sum_{i=1}^N \frac{\partial f}{\partial q_i} \frac{\partial g}{\partial p_i} - \frac{\partial f}{\partial p_i} \frac{\partial g}{\partial q_i}$

And,
$$X_{\{f,g\}} = -[X_f, X_g]$$

A **Poisson algebra** is an associative algebra together with a Lie bracket that also satisfies Leibniz's law.

Complex Vector Space

A complex structure on a vector space, V is a linear map $J: V \rightarrow V$ such that $J^2 = -I$ and (V, J) is a **complex vector space**.

For a symplectic vector space (V, Ω) , a complex structure J on V is **compactible** (Ω -compactible) if,

 $G_I(u, v) \coloneqq \Omega(u, Jv) \quad \forall u, v \in V \text{ is a positive inner product on } V$

Further, if J is a symplectic transformation i.e., $\Omega(Ju, Jv) = \Omega(u, v)$ is called a **Kählerian vector space**.

THEOREM - Let (V, Ω) be a symplectic vector space. Then there is a compatible complex structure J on V.

Almost Complex Structure

An almost complex structure on a manifold M is a smooth field of complex structures on TM,

$$X \in M \mapsto J_{\chi}: T_{\chi}M \to T_{\chi}M$$
 linear & $J^2 = -I$

(*M*,*J*) is an **almost complex manifold**.

Let (M, ω) be a symplectic manifold. An almost complex structure J on M is called compatible (with ω or ω -compatible) if the assignment,

$$x \mapsto g_x: T_x M \times T_x M \to \mathbb{R}; \quad g_x(u, v) \coloneqq \omega_x(u, J_x v)$$

is a Riemannian metric on M.

Almost Complex Structure

Let (M,ω) be a symplectic manifold, and g a Riemannian metric on M. Then there exists a canonical almost complex structure J on M which is compatible.

Data Condition/Technique Consequence Question

$$\omega, J \qquad \begin{array}{l} \omega(Ju, Jv) = \omega(u, v) \\ \omega(u, Ju) > 0, u \neq 0 \end{array} \qquad \begin{array}{l} g(u, v) := \omega(u, Jv) \\ \text{ is positive inner product} \end{array} \qquad (g \text{ flat?})$$

$$g,J \qquad \begin{array}{l} g(Ju,Jv) = g(u,v) \\ (\text{i.e., } J \text{ is orthogonal}) \end{array} \qquad \begin{array}{l} \omega(u,v) := g(Ju,v) \\ \text{is nondeg., skew-symm.} \end{array} \qquad \begin{array}{l} \omega \text{ closed}? \end{array}$$

 ω, g polar decomposition \rightsquigarrow J almost complex str. J integrable?