

DESIGNING TWISTED GRAPHENE BASED DEVICES

JOVI K P0181214 SEM 9 THESIS

PROJECT GUIDE:

DR. ROMAIN DANNEAU,

Institut für Nanotechnologie, Karlsruher Institut für Technologie

ACKNOWLEDGEMENT

Image Location: INT-KIT, Karlsruhe

I give my deepest thanks to my supervisor **Dr. Romain Danneau**, and Prof. Ralph Krupke, Group Head and my gratitude for all members of Krupke Group and INT.

2

SESSION 1

INTRODUCTION

PREDICTION OF MAGIC ANGLE tBLG:

CONCLUSION

Emergence of strongly correlated system in Bi-Layer Graphene for twist ~ 1.1°, 0.5°, ...

Fig 2: Moiré bands: (a) Energy dispersion for the 14 bands closest to the Dirac point plotted along the k-space trajectory. (b) DOS.

Bistritzer, R. & MacDonald, A. H. Moiré bands in twisted double-layer graphene. Proceedings of the National Academy of Sciences 108, 12233–12237 (2011).

TEAR AND STACK PROCEDURE FOR BLG:

Fig 4: Rotationally aligned graphene double layer realized by successive transfers from a monolayer graphene using a hemispherical handle substrate.

Kim, K. et al. Van der Waals Heterostructures with High Accuracy Rotational Alignment. Nano Letters 16, 1989–1995 (2016). Cao, Y. et al. Superlattice-Induced Insulating States and Valley-Protected Orbits in Twisted Bilayer Graphene. Physical Review Letters 117, 116804 (2016).

24-04-2023 JOVI K

UM DAE CEBS

http://www.int.kit.edu/krupke-group

CONFIRMATION OF MAtBLG:

Cao, Y. et al. Unconventional superconductivity in magic-angle graphene superlattices. Nature 556, 43–50 (2018).

THESIS OBJECTIVE

Standardising the **TEAR**, TWIST and **STACKING** in tBLG

- Exploring Efficient ways of tearing a graphene
- Standardising the procedure
- Conclude with fabricating MAtBLG

STACKING PROCEDURE

SESSION 2

Reviewing Previous Stacking Procedure

DRY PROCEDURE :

Cao, Y. et al. Unconventional superconductivity in magic-angle graphene superlattices. Nature 556, 43–50 (2018).

DRAWBACKS FOR TBLG:

TEARING PROBLEM

Avoid PPC stamp contamination on other half of graphene

CLEAN INTERFACE PROBLEM

Tear a graphene along the edge of hBN flake

UM DAE CEBS

SESSION 3

Modified Dry Stacking Procedure

TEAR PROBLEM

IN **HERENE**CE

Fislo:tababseaphtn@idakp
befpGrapikene. b) Same
flake after pickup. Faint
outline isnithe throtagh
regievielus chacks

24-04-2023 JOVI K

TEARING A PAPER:

TEAR ALONG AN EDGE

UM DAE CEBS

TEARING A PAPER - RIPPING APART:

24-04-2023 JOVI K

TEAR ALONG AN EDGE - DRY STACK PROCEDURE :

b)

Fig 9: (a) Optical image during stacking. Concentric circles and tear outlines are overlayed and (b) cross sectional schematic.

Cao, Y. et al. Unconventional superconductivity in magic-angle graphene superlattices. Nature 556, 43–50 (2018).

UM DAE CEBS

TEARING A PAPER:

TEAR ALONG AN EDGE

UM DAE CEBS

AFM TEAR - USING KNIFE:

24-04-2023 JOVI K

DRAWBACKS FOR TBLG:

Avoid PPC stamp contamination on other half of graphene

CLEAN INTERFACE PROBLEM

Tear a graphene along the edge of hBN flake

TEARING PROBLEM

IMAGE

Fig 10: cross sectional schematic of the effect of heat on hemispherical stamp

Convexo-Cylindrical stamp

Easy to detach from substrate after contact

UM DAE CEBS

<u>Convexo-Cylindrical</u> <u>stamp</u>

Contact edge expansion CAN be MANAGED

No Neck Formation

 Easy to detach from substrate after contact

SESSION 3

CONCLUSION

Exfoliation of hBN and graphene flakes
 Pickup of hBN

b)

26

Figure 4.13: Convexo-rect. stamp. a) Optical image of hemispherical stamp with a cylindrical plateau at the tip and b) corresponding cross-section. c) is the optical image of (a) picking up an hBN flake.

UM DAE CEBS

24-04-2023 JOVI K

1. Exfoliation of hBN and graphene flakes

- 2. Pickup of hBN
- 3. Tear Graphene
- 4. Pickup of 1st half of graphene

Fig 15: Optical image of a) graphene flake before tear-pickup, b) stamp with hBN in contact with half gr and c) other half of graphene left on Fig 14: AFM tear of a graphene flake substrate after tear. and the pixel zoomed in view

24-04-2023 JOVI K

- 2. Pickup of hBN
- 3. Tear Graphene
- 4. Pickup of 1st half of graphene
- 5. Twist and pickup of other half

Fig 16: Optical image of a) graphene flake before final pickup, b) the twisted stamp containing hBN-gr in contact with the other half of gr and c) substrate after final pickup.

- 3. Tear Graphene
- 4. Pickup of 1st half of graphene
- 5. Twist and pickup of other half
- 6. hBN encapsulation and post processing

24-04-2023 JOVI K

UM DAE CEBS

7. Analysis

Twist angle ~ 2-3° a)

Fig 18: a) Optical Image with overlay of the gr flakes. The twist is estimated from the images b) Stack with markings on Raman spectrum sites c) Relevant Raman Spectrum.

UM DAE CEBS

2. 16.4 μm

PROCEDURE FOR TBLG -

2. 16.4 µm

3. 10.8 µm

b)

1. 20.2 μm

3. 10.8 µm

SUMMARY OF MY WORK

- Clean tearing edge by use of AFM
- Innovative solution to the clean interface problem leads to ultra clean interface.
- Standardised the dry stacking procedure for tear and stack.
- **Easily generalisable for a MAtBLG.**

BIBIOGRAPHY

- Y. Cao, V. Fatemi, S. Fang, K. Watanabe, T. Taniguchi, E. Kaxiras, and P. Jarillo-Herrero, Unconventional Superconductivity in Magic-Angle Graphene Superlattices, Nature 2018 <u>556:7699 556, 43</u> (2018).
- Y. Cao et al., *Correlated Insulator Behaviour at Half-Filling in Magic-Angle Graphene Superlattices*, Nature 2018 <u>556:7699 556, 80</u> (2018).
- A. L. Sharpe, E. J. Fox, A. W. Barnard, J. Finney, K. Watanabe, T. Taniguchi, M. A. Kastner, and D. Goldhaber-Gordon, *Emergent Ferromagnetism near Three-Quarters Filling in Twisted Bilayer Graphene*, Science (1979) <u>365, 605</u> (2019).
- K. Kim, A. DaSilva, S. Huang, B. Fallahazad, S. Larentis, T. Taniguchi, K. Watanabe, B. J. LeRoy, A. H. MacDonald, and E. Tutuc, *Tunable Moiré Bands and Strong Correlations in Small-Twist-Angle Bilayer Graphene*, Proc Natl Acad Sci U S A <u>114</u>, <u>3364</u> (2017).
- R. Bistritzer and A. H. Macdonald, *Moiré Bands in Twisted Double-Layer Graphene*, PNAS 108, <u>12233</u> (2011).

Image credit: SEP Hall Thruster, NASA

BIBIOGRAPHY

- E. Y. Andrei and A. H. MacDonald, *Graphene Bilayers with a Twist*, Nat Mater 19, <u>1265</u> (2020).
- Z. Ni, Y. Wang, T. Yu, and Z. Shen, *Raman Spectroscopy and Imaging of Graphene*, Nano Res 1, <u>273</u> (2008).
- A. C. Ferrari et al., *Raman Spectrum of Graphene and Graphene Layers*, Phys Rev Lett <u>97, 187401</u> (2006).
- Y. Cao, J. Y. Luo, V. Fatemi, S. Fang, J. D. Sanchez-Yamagishi, K. Watanabe, T. Taniguchi, E. Kaxiras, and P. Jarillo-Herrero, *Superlattice-Induced Insulating States and Valley-Protected Orbits in Twisted Bilayer Graphene*, Phys Rev Lett <u>117</u>, <u>116804</u> (2016).
- Z. Wang, I. Gutiérrez-Lezama, N. Ubrig, M. Kroner, M. Gibertini, T. Taniguchi, K. Watanabe, A. Imamoğlu, E. Giannini, and A. F. Morpurgo, *Very Large Tunneling Magnetoresistance in Layered Magnetic Semiconductor CrI3*, Nature Communications 2018 <u>9:1 9, 1 (</u>2018).

Image credit: <u>here</u>

THANKYOU

<u>k.jovi@cbs.ac.in</u>

Jovi K, P0181214, UM DAE CEBS

THE END

APPENDIX

SLG – MOIRE SUPERLATTICE:

Cao, Y. et al. Unconventional superconductivity in magic-angle graphene superlattices. Nature 556, 43–50 (2018).

CAPTION

37

FABRICATION MAGIC ANGLE TBLG:

SLG – DIRAC CONES:

Cao, Y. et al. Unconventional superconductivity in magic-angle graphene superlattices. Nature 556, 43–50 (2018).

tBLG_1 Angle ~24°

tBLG_1 Angle ~24°

tBLG_1 Angle ~24°

JOVI K

24-04-2023

tBLG_1 Angle ~24°

JOVI K

24-04-2023

5% Power

tBLG Angle ~24°

Site	Comment	Centre	FWHM	COD
ref	sLG	2686.97147	26.6696	0.99631
b1.0	Gr stack	2687.27108	25.9488	0.98766
b1.3	tBLG	2693.26407	23.5229	0.99223
a1.0	tBLG	2693.63354	24.6959	0.94786
a1.1	Gr stack	2686.63373	19.9056	0.91869

- tBL has blueshift ~6 cm-1
- Before after heat blueshift is same

AFM contact Tear

• 0μm 2 4 6 8 10 10 12 14 16 18 69.3 pm

+ 0 µm 2 4

Tap before tear IG – 0.5 PG – 5 Target – 310mV Setpoint – 270mV Contact before tear IG – 5 PG – 10 Setpoint – 0.6 V Tap after tear IG – 0.5 PG – 5 Target – 310mV Setpoint – 240mV

tBLG_2 Expected angle ~ 3°

UM DAE CEBS

24-04-2023 JOVI K

tBLG_2 Expected angle ~ 5°

24-04-2023 JOVI K

http://www.int.kit.edu/krupke-group

Clean Interface – tBLG4

gr2911_gs1_a2/tBLG4

Clean Interface – tBLG4

Clean Interface – tBLG4

²⁴⁻⁰⁴⁻²⁰²³ JOVI K